cmr:
abba chia hết cho 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b.ab+ba chia hết cho 11
=>10a+b + 10b+a chia hết cho 11
=>10a+a + 10b+b chia hết cho 11
=>11a+11b chia hết cho 11(đfcm)
a. Vì abcdeg chia hết cho 11 ( giả thiết b ) => abcdeg chia hết cho 11
b. Vì ab+cd+eg chia hết cho 11 ( giả thiết đầu bài ) => ab+cd+eg chia hết cho 11
Giả sử a=7; b=1 => 2a-3b=2.7-3.1=11 chia hết cho 11
=> 3a-b=3.7-1=20 không chia hết cho 11 => đề bài sai nếu 2a-3b chia hết cho 11 thì 3a+b chia hết cho 11 mới đúng
+ 2a-3b chia hết cho 11 => 4(2a-3b) chia hết cho 11 => 4(2a-3b)=8a-12b=11a-11b-3a-b=11(a-b)-(3a+b) chia hết cho 11
Mà 11(a-b) chia hết cho 11 => 3a+b chia hết cho 11
+ 3a+b chia hết cho 11 mà a chia hết cho 11 => 3a chia hết cho 11 => b chia hết cho 11
Ta có :
A = 13! - 11! = 11! . 12 . 13 - 11! = 11! . (12 . 13 - 1) = 11! . 155 chia hết cho 155
- Hai số: 33 và 55 chia hết cho 11. Chúng có tổng là: 33+55 = 88, mà 88 chia hết cho 11
=> Tổng của chúng chia hết cho 11.
- Hai số: 26 và 39 chia hết cho 13. Chúng có tổng là: 26+39 = 65, mà 65 chia hết cho 13
=> Tổng của chúng chia hết cho 13.
a/ \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11\left(a+b\right)⋮11\)
b/ \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\)
c/ \(\overline{abba}=1001a+110b=11.91.a+11.10.b=11\left(91a+10b\right)⋮11\)
Một số chia hết cho 11 khi hiệu giữa tổng các chữ số ở vị trí chẵn (hoặc lẻ) với tổng các chữ số ở vị trí lẻ (hoặc chẵn) chia hết cho 11
\(\overline{abcd}⋮11\) khi \(\left(a+c\right)-\left(b+d\right)⋮11\) hoặc \(\left(b+d\right)-\left(a+c\right)⋮11\)
Ta có
\(\overline{ab}+\overline{cd}=10.a+b+10.c+d=\)
\(=11.a+11.c+\left(b+d\right)-\left(a+c\right)=\)
\(=11.\left(a+c\right)+\left(b+d\right)-\left(a+c\right)⋮11\)
Ta có \(11.\left(a+c\right)⋮11\Rightarrow\left(b+d\right)-\left(a+c\right)⋮11\)
\(\Rightarrow\overline{abcd}⋮11\)
\(\overline{abba}\) = \(\overline{a00a}\) + \(\overline{bb00}\) = a x 1001 + b x 110 = 11 x ( a x 91 + b x 10)⋮11