K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

ta có \(x-\sqrt{x}+1=\left(x-1\right)^2+\sqrt{x}\)

mà \(\left(\sqrt{x}-1\right)^2>=0>-1\Leftrightarrow\sqrt{x}-1< \sqrt{x}+\left(\sqrt{x}-1\right)^2\)-1)^2

 hay\(\sqrt{x}-1< x-\sqrt{x}+1\)

vậy đpcm

3 tháng 8 2017

ĐK \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

a. Ta có \(A=\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right):\frac{2x}{\sqrt{x}-1}\)

\(=2\sqrt{x}.\frac{\sqrt{x}-1}{2x}=\frac{\sqrt{x}-1}{\sqrt{x}}\)

b. Để \(A< 0\Rightarrow\frac{\sqrt{x}-1}{\sqrt{x}}< 0\Rightarrow\sqrt{x}-1< 0\Rightarrow0\le x< 1\)

Vậy \(0\le x< 1\)thì \(A< 0\)

c. Ta có \(A=\frac{\sqrt{x}-1}{\sqrt{x}}=1-\frac{1}{\sqrt{x}}\)

Để A nguyên thì \(\sqrt{x}\inƯ\left(1\right)\Rightarrow x=1\)

Vậy với x=1 thì A nguyên 

12 tháng 4 2020

\(P=\left(\frac{1}{x-\sqrt{x}}-\frac{1}{\sqrt{x}-1}\right).\frac{x-2\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{1}{\sqrt{x}-1}\right).\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}\)

\(=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{1}{\sqrt{x}-1}\right).\left(\sqrt{x}-1\right)\)

\(=\frac{1}{\sqrt{x}-1}\)

Để \(P< \sqrt{P}\)

\(\Rightarrow\hept{\begin{cases}P\ge0\\P^2< P\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}P\ge0\\P^2-P< 0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}P\ge0\\P\left(P-1\right)< 0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}P\ge0\\0< P< 1\end{cases}}\)

\(\Rightarrow0< P< 1\)

+ ) \(P>0\Rightarrow\frac{1}{\sqrt{x}}-1>0\Rightarrow\frac{1}{\sqrt{x}}>1\)

\(\Rightarrow\sqrt{x}< 1\Rightarrow0< x< 1\)

\(P< 1\Rightarrow\frac{1}{\sqrt{x}-1}< 1\Rightarrow\frac{1}{\sqrt{x}}< 2\)

\(\Rightarrow\sqrt{x}>\frac{1}{2}\Rightarrow x>\frac{1}{4}\)

\(\Rightarrow\frac{1}{4}< x< 1\)

13 tháng 9 2019

\(B=\frac{x-1-4\sqrt{x}+\sqrt{x}+1}{x-1}.\frac{x-1}{x-2\sqrt{x}}\)

\(=\frac{x-3\sqrt{x}}{x-2\sqrt{x}}\)

\(=\frac{\sqrt{x}-3}{\sqrt{x}-2}\)

a.Ta co:

\(\frac{\sqrt{x}-3}{\sqrt{x}-2}< 1\left(x\ge0,x\ne4\right)\) 

\(\Leftrightarrow\sqrt{x}-3< \sqrt{x}-2\)

\(\Leftrightarrow3>2\)

Vay \(B< 1\left(\forall x\ge0,x\ne4\right)\)

Lát mình giải 2 câu kia,di ăn com cái

13 tháng 9 2019

b.Ta co:

\(\frac{\sqrt{x}-3}{\sqrt{x}-2}< \frac{3}{2}\)

\(\Leftrightarrow2\sqrt{x}-6< 3\sqrt{x}-6\)

\(\Leftrightarrow x>0\)

Vay \(B< \frac{3}{2}\left(\forall x>0,x\ne4\right)\)

c.Ta co:

\(\frac{\sqrt{x}-3}{\sqrt{x}-2}>\sqrt{x}-1\)

\(\Leftrightarrow\sqrt{x}-3>x-3\sqrt{x}+2\)

\(\Leftrightarrow x-4\sqrt{x}+5< 0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+1< 0\) (vo ly)

Vay khong co gia tri nao cua x thoa man \(B>\sqrt{x}-1\)