1, Cho a\(\ge3;b\ge4;c\ge2.\) Tìm Max \(E=\frac{ab.\sqrt{c-2}+bc.\sqrt{a-3}+ca.\sqrt{b-4}}{2\sqrt{2}}\) 2, Cho x,y,z >0 : xy + yz + zx =5. Tìm Min \(G=\frac{3x+3y+2z}{\sqrt{6x^2+30}+\sqrt{6y^2+30}+\sqrt{z^2+5}}\) Ai biết làm làm giúp hộ mình nhanh nha, Mai đi học rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{a+b}{ab}+\dfrac{2}{a+b}=a+b+\dfrac{2}{a+b}\)
\(P=\dfrac{a+b}{2}+\dfrac{2}{a+b}+\dfrac{a+b}{2}\)
\(P\ge2\sqrt{\dfrac{\left(a+b\right).2}{2\left(a+b\right)}}+\dfrac{2\sqrt{ab}}{2}=3\)
Dấu "=" xảy ra khi \(a=b=1\)
Bạn tham khảo:
Câu hỏi của tran duc huy - Toán lớp 10 | Học trực tuyến
a,b,c phải dương thì đề bài mới đúng.
Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)\ge3.3\)(vì a+b+c=3)
\(\Leftrightarrow1+\frac{b}{a}+\frac{c}{a}+\frac{a}{b}+1+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}+1\ge9\)
\(\Leftrightarrow\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{c}{b}+\frac{b}{c}\right)\ge6\)(1)
Mặt khác, \(\frac{x}{y}+\frac{y}{x}\ge2\forall x;y>0\)
Do đó bất đẳng thức (1) đúng mà các phép biến đổi trên là tương đương nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)
Chúc bạn học tốt.
\(b\left(a-b\right)\le\dfrac{\left(b+a-b\right)^2}{4}=\dfrac{a^2}{4}\)
\(\Rightarrow\dfrac{1}{b\left(a-b\right)}\ge\dfrac{4}{a^2}\)
\(\Rightarrow a+\dfrac{1}{b\left(a-b\right)}\ge a+\dfrac{4}{a^2}=\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{4}{a^2}\ge3\sqrt[3]{\dfrac{a}{2}\dfrac{a}{2}\dfrac{4}{a^2}}=3\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\dfrac{a}{2}=\dfrac{4}{a^2}\\b=a-b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
\(VT=\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}+\dfrac{2}{\left(a+1\right)^2}+\dfrac{2}{\left(b+1\right)^2}+\dfrac{2}{\left(c+1\right)^2}\)
Mặt khác:
\(\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{a}{b}}+1.1\right)^2}+\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{b}{a}}+1.1\right)^2}\ge\dfrac{1}{\left(1+ab\right)\left(1+\dfrac{a}{b}\right)}+\dfrac{1}{\left(1+ab\right)\left(1+\dfrac{b}{a}\right)}=\dfrac{1}{1+ab}\)
Do đó:
\(VT\ge\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}+\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ca}\)
\(VT\ge\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}+\dfrac{1}{1+\dfrac{1}{c}}+\dfrac{1}{1+\dfrac{1}{a}}+\dfrac{1}{1+\dfrac{1}{b}}=3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
cho em hỏi một tí ạ
Chộ \(\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{a}{b}}+1.1\right)^2}+\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{b}{a}}+1.1\right)^2}\ge\dfrac{1}{\left(ab+1\right)\left(1+\dfrac{a}{b}\right)}+\dfrac{1}{\left(1+ab\right)\left(1+\dfrac{b}{a}\right)}\)
áp dụng công thức gì đây ạ
Áp dụng bất đẳng thức Svacxo ta có :
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{9}{a+2b}\)
Tương tự : \(\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{9}{b+2c};\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{a}\ge\dfrac{9}{c+2a}\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{3}{a+2b}+\dfrac{3}{b+2c}+\dfrac{3}{c+2a}\)
Dấu = xảy ra khi a=b=c
\(=>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{9}{a+2b}\)(BĐT Cauchy Schawarz)(1)
tương tự \(=>\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{9}{b+2c}\left(2\right)\)
\(=>\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{a}\ge\dfrac{9}{c+2a}\left(3\right)\)
(1)(2)(3)
\(=>3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\left(\dfrac{1}{a+2b}+\dfrac{1}{b+2c}+\dfrac{1}{c+2a}\right)\)
\(=>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\left(\dfrac{1}{a+2b}+\dfrac{1}{b+2c}+\dfrac{1}{c+2a}\right)\left(dpcm\right)\)
Bài 1:dưới mẫu có cái gì thế nhỉ
Bài 2:Câu hỏi của Kan Zandai Nalaza - Toán lớp 9 - Học toán với OnlineMath
Dưới mẫu là 2\(\sqrt{2}\) hình như là sai phải làm mãi ko ra