Tam giác ABC có góc A = 90 độ, đường cao AH. Vẽ HE vuông AB, HF vuông AC, I trung điểm BC.
a) Chứng minh EF = AH
b) Chứng minh AI vuông EF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{EAF}=90^0\)
Do đó: AEHF là hình chữ nhật
Suy ra: AH=EF
a/ Xét tứ giác AEHF
HE vuông góc AB; AF vuông góc AB => HE//AF
AE vuông góc AC; HF vuông góc AC => AE//HH
=> AEHF là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi 1)
Mà ^BAC=90
=> AEHF là HCN => AH=EF (hai đường chéo HCN = nhau)
b/ Gọi O là giao của AH và EF
+ Xét tg vuông HCF có IH=IC => IF=IH (Trung tuyến thuộc cạnh huyền băng nửa cạnh huyền)
=> tg IHF cân tại I => ^IHF=^HFI (1)
+ Ta có AH=EF (cmt) và OA=OH; OE=OF (trong HCN các đường chéo cắt nhau tại trung điểm môic đường => OH=OF
=> tg OHF cân tại O => ^OHF=^OFH (2)
+ Mà ^IHF+^OHF=^AHC=90 (3)
=> ^HFI+^OFH=^EFI=90 => EF vuông góc với FI
Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hình chữ nhật
=>EF=AH
a: Xét tứ giác AEHF có \(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
Suy ra: EF=AH
b: Ta có: AEHF là hình chữ nhật
nên Hai đườg chéo AH và FE cắt nhau tại trung điểm của mỗi đường
hay OA=OH;OE=OF
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
Suy ra: AH=FE
a: Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
nên AEHF là hình chữ nhật
=>EF=AH
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
S=1/2*3*4=6(cm2)