K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2023

a) Ta có: 

\(0,3\left(2\right)=0,3222...=0,32+0,00222...\)

Mà: \(0,32+0,00222...>0,32\)

\(\Rightarrow0,3\left(2\right)>0,32\)

b) Ta có:

\(\dfrac{5}{6}=0,8\left(3\right)=0,8333...=0,8+0,0333...\)

\(0,834=0,8+0,034\)

Mà: \(0,0333...< 0,34\)

Nên: \(\dfrac{5}{6}< 0,834\)

a: 0,3(2)=0,3222...>0,32

b: 5/6=0,8(3)=0,83333...<0,834

15 tháng 11 2023

\(\dfrac{5}{6}=0,8\left(3\right)< 0,834\)

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

Ta có \(\frac{5}{6} = 0,8(3)\) = \(0,8333....\)

Vì:\(0,834 > 0,8333... \Rightarrow 0,834 > \frac{5}{6}\)

22 tháng 8 2023

a) Vì \(\pi>1\) nên hàm số \(log_{\pi}x\) đồng biến trên\(\left(0;+\infty\right)\)

Mà \(0,8< 1,2\) nên \(log_{\pi}0,8< log_{\pi}1,2\)

b) Vì \(0,3>1\)  nên hàm số \(log_{0,3}x\)  nghịch biến trên \(\left(0;+\infty\right)\)

Mà \(2<2,1\) nên \(log_{0,3}2>log_{0,3}2,1\)
28 tháng 10 2022

>

<

>

12 tháng 2 2023

2/5> 2/7

5/9<5/6

11/2>11/3

cách so sánh :

 sét mẫu số của phân số này bé hơn mẫu số của phân số kia thì phân số này lớn hơn

 mẫu số của phân số này lớn hơn mẫu số của phân số kia thì phân số này bé  hơn 

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

Mẫu 1:

+) Số trung bình: \(\overline x  = \frac{{0,1 + 0,3 + 0,5 + 0,5 + 0,3 + 0,7}}{6} = 0,4\)

+) Phương sai \({S^2} = \frac{1}{6}\left( {0,{1^2} + 0,{3^2} + 0,{5^2} + 0,{5^2} + 0,{3^2} + 0,{7^2}} \right) - 0,{4^2} \approx 0,0367\)

+) Độ lệch chuẩn \(S = \sqrt {{S^2}}  \approx 0,19\)

Mẫu 2:

+) Số trung bình: \(\overline x  = \frac{{1,1 + 1,3 + 1,5 + 1,5 + 1,3 + 1,7}}{6} = 1,4\)

+) Phương sai \({S^2} = \frac{1}{6}\left( {1,{1^2} + 1,{3^2} + 1,{5^2} + 1,{5^2} + 1,{3^2} + 1,{7^2}} \right) - 1,{4^2} \approx 0,0367\)

+) Độ lệch chuẩn \(S = \sqrt {{S^2}}  \approx 0,19\)

Mẫu 3:

+) Số trung bình: \(\overline x  = \frac{{1 + 3 + 5 + 5 + 3 + 7}}{6} = 4\)

+) Phương sai \({S^2} = \frac{1}{6}\left( {{1^2} + {3^2} + {5^2} + {5^2} + {3^2} + {7^2}} \right) - {4^2} \approx 3,67\)

+) Độ lệch chuẩn \(S = \sqrt {{S^2}}  \approx 1,9\)

Kết luận:

Số liệu ở mẫu 2 hơn số liệu ở mẫu 1 là 1 đơn vị, số trung bình của mẫu 2 hơn số trung bình mẫu 1 là 1 đơn vị, còn phương sai và độ lệch chuẩn là như nhau.

Số liệu ở mẫu 3 gấp 10 lần số liệu mẫu 1, số trung bình, phương sai và độ lệch chuẩn của mẫu 3 lần lượt gấp 10 lần, 100 lần và 10 lần mẫu 1.

a: \(2\sqrt{6}=\sqrt{24}\)

\(3\sqrt{3}=\sqrt{27}\)

mà 24<27

nên \(2\sqrt{6}< 3\sqrt{3}\)

b: \(\dfrac{2}{5}\sqrt{6}=\sqrt{\dfrac{4}{25}\cdot6}=\sqrt{\dfrac{24}{25}}\)

\(\dfrac{7}{4}\sqrt{\dfrac{1}{3}}=\sqrt{\dfrac{49}{16}\cdot\dfrac{1}{3}}=\sqrt{\dfrac{49}{48}}\)

mà 24/25<1<49/48

nên \(\dfrac{2}{5}\sqrt{6}< \dfrac{7}{4}\sqrt{\dfrac{1}{3}}\)

a: -3/4=-9/12

-5/6=-10/12

mà -9>-10

nên -3/4>-5/6

b: -5/17<0<2/7

c: 11/10>1>9/14