Tìm x thuộc N biết
\(x^2+7\) chia hết cho \(\left(2x^2+1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y+2⋮x;x+2⋮y\Rightarrow\left(x+2\right)\left(y+2\right)⋮xy\Rightarrow xy+2x+2y+4⋮xy\Rightarrow2x+2y+4⋮xy\)
\(\Rightarrow2\left(x+y+2\right)⋮xy\Rightarrow2⋮xy\Rightarrow xy\inƯ\left(2\right)=1;2\)
\(xy=1\Rightarrow x=1,y=1\Rightarrow y+2=1+2=3⋮x=1\Rightarrow y+2⋮x\)
\(x+2=1+2=3⋮y=1\Rightarrow x+2⋮y\)
\(\Rightarrow x=1,y=1\left(tm\right)\)
\(xy=2\Rightarrow x=1,y=2;x=2,y=1\Rightarrow x+2=1+2=3\)ko chia hết cho \(y=2\Rightarrow x+2\)ko chia hết cho y
\(\Rightarrow x=1,y=2\left(ktm\right)\Rightarrow x=2,y=1\left(ktm\right)\)
vậy x=1,y=1
1)(2x+1)(y-4)=12
Ta xét bảng sau:
2x+1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
2x | 0 | -2 | 1 | -3 | 2 | -4 | 3 | -5 | 5 | -7 | 11 | -13 |
x | 0 | -1 | 1 | -2 | ||||||||
y-4 | 12 | -12 | 4 | -4 | ||||||||
y | 16 | -8 | 8 | 0 |
2)n-7 chia hết cho n+1
n+1-8 chia hết cho n+1
=>8 chia hết cho n+1 hay n+1EƯ(8)={1;-1;2;-2;4;-4;8;-8}
=>nE{2;0;3;-1;5;-3;9;-7}
3)|x+3|+2<4
|x+3|<4-2
|x+3|<2
=>|x+3|=1 và |x+3|=0
=>x+3=1 hoặc x+3=-1 hay x+3=0
x=1-3 x=-1-3 x=0-3
x=-2 x=-4 x=-3
Vậy x=-2;-3 hoặc x=-4
a) \(x-2⋮x+7\)
\(x+7-9⋮x+7\)
Mà \(x+7⋮x+7\)
\(\Rightarrow-9⋮x+7\)
\(\Rightarrow x+7\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
\(x+7\) | \(1\) | \(-1\) | \(3\) | \(-3\) | \(9\) | \(-9\) |
\(x\) | \(-6\) | \(-8\) | \(-4\) | \(-10\) | \(2\) | \(-16\) |
Vậy, \(x\in\left\{-16;-10;-8;-6;-4;2\right\}\)
b) \(2x+1⋮2x-3\)
\(2x-3+4⋮2x-3\)
Mà \(2x-3⋮2x-3\)
\(\Rightarrow4⋮2x-3\)
\(\Rightarrow2x-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
VÌ \(2x-3\)là số lẻ và \(x\inℤ\)
\(\Rightarrow2x-3\in\left\{\pm1\right\}\)
\(2x-3\) | \(1\) | \(-1\) |
\(x\) | \(2\) | \(1\) |
Vậy, \(x\in\left\{1;2\right\}\)
=>2x^2+14 chia hết cho 2x^2+1
=>2x^2+1+13 chia hết cho 2x^2+1
=>13 chia hết cho 2x^2+1
=>2x^2+1 thuộc {1;-1;13;-13}
=>2x^2+1=1 hoặc 2x^2+1=13
=>2x^2=12 hoặc 2x^2=0
=>x^2=6 hoặc x^2=0
=>x=0 hoặc x=căn 6(loại) hoặc x=-căn 6(loại)