K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
10 tháng 8 2023

\(4x=5y\Rightarrow x=\dfrac{5}{4}y\\ \Rightarrow\dfrac{15}{4}y-2y=5\\ \Leftrightarrow\dfrac{7}{4}y=5\\ y=\dfrac{20}{7}\\ \Rightarrow x=\dfrac{25}{7}\)

10 tháng 8 2023

Bằng 25/7 bạn nhé

20 tháng 9 2018

\(\frac{x}{5}\)=\(\frac{y}{2}\)\(\Rightarrow\)2x=5y\(\Rightarrow\)3x=7,5y

thay vào:  7,5y-2y=44

\(\Rightarrow\)5,5y=44

\(\Rightarrow\)y=8

\(\Rightarrow\)x=20

20 tháng 9 2019

\(a,4x=5y\:\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{12}\)

\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{x}{15}=\frac{2y}{24}=\frac{3z}{24}\)

\(\Rightarrow\frac{x-2y+3z}{15-24+24}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{5}{15}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{1}{3}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\cdot15=5\\y=\frac{1}{3}\cdot12=4\\z=\frac{1}{3}\cdot8=\frac{8}{3}\end{cases}}\)

20 tháng 9 2019

mọi người giúp mk câu b, c, d còn lại nha

NV
8 tháng 1

e.

\(\left\{{}\begin{matrix}2x-3y+5=0\\3x+5y-21=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10x-15y=-25\\9x+15y=63\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}19x=38\\3x+5y=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{21-3x}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

f.

\(\left\{{}\begin{matrix}x-y\sqrt{2}=0\\2x\sqrt{2}+y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y\sqrt{2}=0\\4x+y\sqrt{2}=5\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x=5\sqrt{2}\\2x\sqrt{2}+y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=5-2x\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=1\end{matrix}\right.\)

NV
8 tháng 1

a.

\(\Leftrightarrow\left\{{}\begin{matrix}5x=-25\\3x-5y=-30\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=\dfrac{3x+30}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=3\end{matrix}\right.\)

b.

\(\Leftrightarrow\left\{{}\begin{matrix}8x-6y=-10\\9x+6y=-24\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}17x=-34\\9x+6y=-24\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=\dfrac{-24-9x}{6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)

20 tháng 9 2021

\(a,\left\{{}\begin{matrix}3x-y=5\\4x+2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-y=5\\2x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\ b,\left\{{}\begin{matrix}5x+2y=9\\x+5y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+2y=9\\5x+25y=55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+2y=9\\23y=46\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

\(c,\left\{{}\begin{matrix}3x+y=10\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x+3y=30\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}13x=39\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\\ d,\left\{{}\begin{matrix}4x+3y=22\\5x+3y=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\5x+3y=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\)

\(e,\left\{{}\begin{matrix}4x-3y=5\\5x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x=18\\5x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

20 tháng 9 2021

a. \(\left\{{}\begin{matrix}3x-y=5\\4x+2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x-2y=10\\4x+2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}10x=20\\6x-2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

b. \(\left\{{}\begin{matrix}5x+2y=9\\x+5y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+2y=9\\5x+25y=55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}23y=46\\5x+2y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\)

c. \(\left\{{}\begin{matrix}3x+y=10\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x+3y=30\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}13x=39\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

d. \(\left\{{}\begin{matrix}4x+3y=22\\5x+3y=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\4x+3y=22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\)

e. \(\left\{{}\begin{matrix}4x-3y=5\\5x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x=18\\4x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

22 tháng 2 2022

\(=4x^2+x^2y-5y^2-\dfrac{5}{3}x^3+6xy^2+x^2y\)

\(=4x^2-\dfrac{5}{3}x^3+2x^2y-5y^2+6xy^2\)

22 tháng 2 2022

thank

 

23 tháng 9 2020

Ta có :\(15x=10y=6z\Rightarrow\hept{\begin{cases}15x=10y\\10y=6z\end{cases}}\Rightarrow\hept{\begin{cases}3x=2y\\5y=3z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{5}\end{cases}}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)

Khi đó 5x3 + 2y3 - z3 = 31

=> 5(2k)3 + 2(3k)3 - (5k)3 = 31

=> 40k3 + 54k3 - 125k3 = 31

=> -31k3 = 31

=> k3 = -1

=> k = -1

=> x = -2 ; y = -3 ; z = -5

b) Ta có 7x = 14y = 6z =>  \(\hept{\begin{cases}7x=14y\\14y=6z\end{cases}}\Rightarrow\hept{\begin{cases}x=2y\\7y=3z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{1}\\\frac{y}{3}=\frac{z}{7}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{6}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{7}\end{cases}}\Rightarrow\frac{x}{6}=\frac{y}{3}=\frac{z}{7}\)

Đặt \(\frac{x}{6}=\frac{y}{3}=\frac{z}{7}=k\Rightarrow\hept{\begin{cases}x=6k\\y=3k\\z=7k\end{cases}}\)

Khi đó 2x2 - 3y2 = 5

<=> 2.(6k)2 - 3.(3k)2 = 5

=> 72k2 - 27k2 = 5

=> 45k2 = 5

=> k2 = 1/9

=> k = \(\pm\frac{1}{3}\)

Nếu k = 1/3 => x = 2 ; y = 1 ; z = 7/3

Nếu k = -1/3 => x = -2 ; y = - 1 ; z = -7/3

Vậy các cặp (x;y;z) thỏa mãn là : (2;1;7/3) ; (-2 ; - 1; -7/3)

c) Ta có : \(3x=8y=5z\Rightarrow\frac{3x}{120}=\frac{8y}{120}=\frac{5z}{120}\Rightarrow\frac{x}{40}=\frac{y}{15}=\frac{z}{24}\)

Đặt \(\frac{x}{40}=\frac{y}{15}=\frac{z}{24}=k\Rightarrow\hept{\begin{cases}x=40k\\y=15k\\z=24k\end{cases}}\)

Khi đó |x - 2y| = 5

<=> |40k - 2.15k| = 5

=>  |10k| = 5

=> \(\orbr{\begin{cases}10k=5\\10k=-5\end{cases}}\Rightarrow\orbr{\begin{cases}k=\frac{1}{2}\\k=-\frac{1}{2}\end{cases}}\)

Nếu k = 5 => x = 20 ; y = 7,5 ; z = 12

Nếu k = -5 => x = -20 ; y =-7,5 ; z = -12

d) 4x = 5y = 6z => \(\frac{4x}{60}=\frac{5y}{60}=\frac{6z}{60}\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{10}\)

Đặt \(\frac{x}{15}=\frac{y}{12}=\frac{z}{10}=k\Rightarrow\hept{\begin{cases}x=15k\\y=12k\\z=10k\end{cases}}\)

Khi đó (3x - 2y)2 = 16

<=> (3.15k - 2.12k)2 = 16

=> (45k -24k)2 = 16

=> (21k)2 = 16

=> \(\orbr{\begin{cases}21k=4\\21k=-4\end{cases}}\Rightarrow\orbr{\begin{cases}k=\frac{4}{21}\\k=-\frac{4}{21}\end{cases}}\)

Nếu k = 4/21 => x = 20/7 ; y = 16/7 ; z = 40/21

Nếu k = -4/21 => x = -20/7 ; y = -16/7 ; z = -40/21

23 tháng 9 2020

Ai có cách làm khác không 

a) ( 10x3y - 5x2y2 - 25 x4y3) : ( -5xy)

Ta có : -5xy( -2x2 + xy + 5x3y2) : ( - 5xy)

Vậy , ta được thương là : -2x2 + xy + 5x3y2

b) ( 27x3 - y3) : ( 3x - y)

Ta có : ( 3x - y)( 9x2 + 3xy + y2) : ( 3x - y)

Vậy , ta được thương là : 9x2 + 3xy + y2

C,D chịu

29 tháng 3 2022

hình như cái này là bài hệ pt ông ơi