K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2023

Ta có:

\(x^2-x+1\)

\(=x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Mà: \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\) và \(\dfrac{3}{4}>0\)

Nên: \(x^2-x+1>0\)

10 tháng 8 2023

\(x^2-x+1\)

\(=x^2-\dfrac{1}{2}.x-\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=x\left(x-\dfrac{1}{2}\right)-\dfrac{1}{2}\left(x-\dfrac{1}{2}\right)+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)\left(x-\dfrac{1}{2}\right)+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) với mọi x ( đpcm )

11 tháng 8 2017

Ta có : x2 - 2xy + y2 + 1 = (x - y)2 + 1

Vì : \(\left(x-y\right)^2\ge0\forall x\in R\)

Nên : \(\left(x-y\right)^2+1\ge1\forall x\in R\)

Suy ra : \(\left(x-y\right)^2+1>0\forall x\in R\)

Vậy x2 - 2xy + y2 + 1 \(>0\forall x\in R\)

Ta có : x - x2 - 1

= -(x2 - x + 1)

\(=-\left(x^2-x+\frac{1}{4}+\frac{3}{4}\right)\)

\(=-\left(x^2-x+\frac{1}{4}\right)-\frac{3}{4}\)

\(=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)

Vì : \(-\left(x-\frac{1}{2}\right)^2\le0\forall x\in R\)

Nên : \(-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}< 0\)

Vậy x - x2 - 1 \(< 0\forall x\in R\)

11 tháng 8 2017

hỏi tí cái chữ A ngược đó là gì vậy bạn

10 tháng 10 2017

\(=x^2-2x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

Vậy \(x^2-x+1>0\)với mọi số thực \(x\)

10 tháng 10 2017

x2-x+1=x2-2.x.1/2+1/4-1/4+1

=(x-1/2)2+3/4

vì (x-1/2)2 luôn không âm

 nên x2-x+1 luôn dương với mọi x

19 tháng 12 2017

x^2-x+1>0

<=> x^2-2.x.1/2+1/4-1/4+1

<=> x^2-2x.1/2+1/4+3/4 >0

<=> (x-1/2)^2 +3/4>0(luôn đúng với mọi x vì (x-1/2)^2>0 với mọi x)

vậy x^2-x+1>0 với mọi x thuộc R.

27 tháng 12 2017

Ta có: x2 - x +1= (x2-x+\(\dfrac{1}{4}\))+\(\dfrac{3}{4}\)

= (x-\(\dfrac{1}{2}\))2 + \(\dfrac{3}{4}\)

Vì (x - \(\dfrac{1}{2}\))2 >= 0 với mọi x

nên (x - \(\dfrac{1}{2}\))2 + \(\dfrac{3}{4}\) > 0 với mọi x (đpcm)

17 tháng 12 2019

\(x^2-x+1>0\forall x\in R\\ \Leftrightarrow x^2-2x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}>0\\ \Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\left(\text{luôn đúng vì }\left(x-\frac{1}{2}\right)^2\ge0\forall x\in R\right)\)

Vậy ta được đpcm

19 tháng 1 2020
https://i.imgur.com/91ZJI8H.jpg

Ta có :

\(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

19 tháng 10 2016

\(x^2-2xy-x+1+2y^2=x^2-x\left(2y+1\right)+\frac{\left(2y+1\right)^2}{4}-\frac{\left(2y+1\right)^2}{4}+2y^2+1\)

\(=\left(x-\frac{2y+1}{2}\right)^2+\frac{1}{4}\left(2y-1\right)^2+\frac{1}{2}>0\)

19 tháng 10 2016

bn có thể lm rõ hơn dc chứ