K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2017

\(\sqrt{4-2.2\sqrt{3}+3}\)-\(\sqrt{2-2\sqrt{2}+1}\)                                                                                                                                               =\(\sqrt{\left(2-\sqrt{3}\right)^2}\)\(\sqrt{\left(\sqrt{2}-1\right)^2}\)

=  2 - \(\sqrt{3}\)-\(\sqrt{2}\)+1=3-\(\sqrt{3}\)-\(\sqrt{2}\)

26 tháng 6 2017

CÓ PHẢI BẰNG -0,1462643699 KO Ạ !

NẾU ĐÚNG THÌ TÍCH NHA !  Oo Bản tình ca ác quỷ oO !

a: \(=2\sqrt{2}+1-3=2\sqrt{2}-2\)

b: \(=\sqrt{3}+1-2\sqrt{3}-1=-\sqrt{3}\)

c: \(=2-\sqrt{3}+\sqrt{3}-1=1\)

5 tháng 9 2023

a) \(\sqrt{2}\left(\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\right)\)

\(=\sqrt{2\cdot\left(4+\sqrt{7}\right)}+\sqrt{2\cdot\left(4-\sqrt{7}\right)}\)

\(=\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}\)

\(=\sqrt{\left(\sqrt{7}\right)^2+2\cdot\sqrt{7}\cdot1+1^2}+\sqrt{\left(\sqrt{7}\right)^2-2\cdot\sqrt{7}\cdot1+1^2}\)

\(=\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{\left(\sqrt{7}-1\right)^2}\)

\(=\left|\sqrt{7}+1\right|+\left|\sqrt{7}-1\right|\)

\(=\sqrt{7}+1+\sqrt{7}-1\)

\(=2\sqrt{7}\)

b) \(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)

\(=\dfrac{\sqrt{2}\cdot\left(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\right)}{\sqrt{2}}\)

\(=\dfrac{\sqrt{2\cdot\left(2-\sqrt{3}\right)}-\sqrt{2\cdot\left(2+\sqrt{3}\right)}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{\left(\sqrt{3}\right)^2-2\cdot\sqrt{3}\cdot1+1^2}-\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot1+1^2}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}\)

\(=\dfrac{\left|\sqrt{3}-1\right|-\left|\sqrt{3}+1\right|}{\sqrt{2}}\)

\(=\dfrac{\sqrt{3}-1-\sqrt{3}-1}{ }\)

\(=-\dfrac{2}{\sqrt{2}}\)

\(=-\sqrt{2}\)

1 tháng 7 2021

\(a,=\sqrt{6+2\sqrt{3-2\sqrt{3}+1}}\)

\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)

\(=\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

\(b,=\sqrt{6-2\sqrt{3+\sqrt{12+2\sqrt{12}+1}}}\)

\(=\sqrt{6-2\sqrt{3+\sqrt{12}+1}}\)

\(=\sqrt{6-2\sqrt{3+2\sqrt{3}+1}}\)

\(=\sqrt{6-2\left(\sqrt{3}+1\right)}=\sqrt{6-2\sqrt{3}-2}=\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{3-2\sqrt{3}+1}=\sqrt{3}-1\)

\(c,=\sqrt{\sqrt{3}+\sqrt{48-10\sqrt{4+2.2\sqrt{3}+3}}}\)

\(=\sqrt{\sqrt{3}+\sqrt{48-10\left(2+\sqrt{3}\right)}}\)

\(=\sqrt{\sqrt{3}+\sqrt{28-10\sqrt{3}}}\)

\(=\sqrt{\sqrt{3}+\sqrt{25-2.5\sqrt{3}+3}}\)

\(=\sqrt{\sqrt{3}+5-\sqrt{3}}=\sqrt{5}\)

\(d,=\sqrt{23-6\sqrt{10+4\sqrt{2-2\sqrt{2}+1}}}\)

\(=\sqrt{23-6\sqrt{6+4\sqrt{2}}}\)

\(=\sqrt{23-6\sqrt{4+2.2\sqrt{2}+2}}\)

\(=\sqrt{23-6\sqrt{\left(2+\sqrt{2}\right)^2}}\)

\(=\sqrt{23-12-6\sqrt{2}}=\sqrt{11-6\sqrt{2}}\)

\(=\sqrt{9-2.3\sqrt{2}+2}=3-\sqrt{2}\)

a) Ta có: \(\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)

\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)

\(=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)

b) Ta có: \(\sqrt{6-2\sqrt{3+\sqrt{13+4\sqrt{3}}}}\)

\(=\sqrt{6-2\sqrt{4+2\sqrt{3}}}\)

\(=\sqrt{6-2\left(\sqrt{3}+1\right)}\)

\(=\sqrt{4-2\sqrt{3}}=\sqrt{3}-1\)

c) Ta có: \(\sqrt{\sqrt{3}+\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)

\(=\sqrt{\sqrt{3}+\sqrt{48-10\left(2+\sqrt{3}\right)}}\)

\(=\sqrt{\sqrt{3}+\sqrt{28-10\sqrt{3}}}\)

\(=\sqrt{\sqrt{3}+5-\sqrt{3}}\)

\(=\sqrt{5}\)

d) Ta có: \(\sqrt{23-6\sqrt{10+4\sqrt{3-2\sqrt{2}}}}\)

\(=\sqrt{23-6\sqrt{10+4\left(\sqrt{2}-1\right)}}\)

\(=\sqrt{23-6\sqrt{6-4\sqrt{2}}}\)

\(=\sqrt{23-6\left(2-\sqrt{2}\right)}\)

\(=\sqrt{11+6\sqrt{2}}\)

\(=3+\sqrt{2}\)

AH
Akai Haruma
Giáo viên
6 tháng 8 2021

Lời giải:

$\sqrt{7+2\sqrt{10}}=\sqrt{2+5+2\sqrt{2.5}}=\sqrt{(\sqrt{2}+\sqrt{5})^2}=\sqrt{2}+\sqrt{5}$

\(\sqrt[3]{3\sqrt[3]{3}-3\sqrt[3]{2}-1}=\sqrt[3]{(1-\sqrt[3]{2})^3}=1-\sqrt[3]{2}\)

Do đó:

\(\text{TS}=\sqrt[3]{2}+\sqrt{2}+\sqrt{5}+1-\sqrt[3]{2}=\sqrt{2}+\sqrt{5}+1=\text{MS}\)

\(A=\frac{\text{TS}}{\text{MS}}=1\)

 

a: Sửa đề: \(\dfrac{\sqrt{7-4\sqrt{3}}}{\sqrt{3}-2}\)

\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{3}-2}=\dfrac{2-\sqrt{3}}{\sqrt{3}-2}\)

=-1

b: Sửa đề: \(\dfrac{\sqrt{5-2\sqrt{6}}}{\sqrt{3}-\sqrt{2}}\)

\(=\dfrac{\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}{\sqrt{3}-\sqrt{2}}=\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}}\)

=1

1: =3+căn 2-3+căn 2

=2căn 2

2: =(căn 3-2)(căn 3+2)

=3-4=-1

AH
Akai Haruma
Giáo viên
11 tháng 8 2021

Lời giải:
1/

\(=\frac{3.\sqrt{5}-\sqrt{5}.\sqrt{15}}{\sqrt{15}-3}=\frac{-\sqrt{5}(\sqrt{15}-3)}{\sqrt{15}-3}=-\sqrt{5}\)

2/

\(=\frac{\sqrt{2+2\sqrt{2.3}+3}}{\sqrt{2}+\sqrt{3}}=\frac{\sqrt{(\sqrt{2}+\sqrt{3})^2}}{\sqrt{2}+\sqrt{3}}=\frac{\sqrt{2}+\sqrt{3}}{\sqrt{2}+\sqrt{3}}=1\)

3/

\(=\frac{2^2+2.2\sqrt{3}+3}{2+\sqrt{3}}=\frac{(2+\sqrt{3})^2}{2+\sqrt{3}}=2+\sqrt{3}\)

 

24 tháng 7 2020

A = \(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)

A = \(\sqrt{2}+1-\sqrt{2}+1\)

A = 2

24 tháng 7 2020

B = \(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)

B = \(2-\sqrt{3}+\sqrt{3}+2\)

B = 4

a: Ta có: \(\dfrac{8}{\left(\sqrt{5}+\sqrt{3}\right)^2}-\dfrac{8}{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\dfrac{8}{8+2\sqrt{15}}-\dfrac{8}{8-2\sqrt{15}}\)

\(=\dfrac{64-16\sqrt{15}-64-16\sqrt{15}}{4}\)

\(=\dfrac{-32\sqrt{15}}{4}=-8\sqrt{15}\)

b: Ta có: \(\dfrac{1}{4-3\sqrt{2}}-\dfrac{1}{4+3\sqrt{2}}\)

\(=\dfrac{4+3\sqrt{2}-4+3\sqrt{2}}{-2}\)

\(=-\dfrac{6\sqrt{2}}{2}=-3\sqrt{2}\)

19 tháng 8 2021

b) \(\dfrac{1}{4-3\sqrt{2}}-\dfrac{1}{4+3\sqrt{2}}=\dfrac{4+3\sqrt{2}-4+3\sqrt{2}}{\left(4-3\sqrt{2}\right)\left(4+3\sqrt{2}\right)}=\dfrac{6\sqrt{2}}{-2}=-3\sqrt{2}\)

c) \(\left(\dfrac{\sqrt{7}+3}{\sqrt{7}-3}-\dfrac{\sqrt{7}-3}{\sqrt{7}+3}\right):\sqrt{28}=\dfrac{\left(\sqrt{7}+3\right)^2-\left(\sqrt{7}-3\right)^2}{\left(\sqrt{7}-3\right)\left(\sqrt{7}+3\right)}:\sqrt{28}=\dfrac{16+6\sqrt{7}-16+6\sqrt{7}}{7-9}=\dfrac{12\sqrt{7}}{-2}=-6\sqrt{7}\)

\(M=\dfrac{8\left(\sqrt{5}+\sqrt{3}\right)}{2}-\dfrac{7\left(2+\sqrt{3}\right)}{4-3}+\dfrac{4\left(\sqrt{2}+1\right)}{2-1}+\dfrac{\sqrt{15}\left(\sqrt{3}-1\right)}{\sqrt{15}}\)

\(=4\left(\sqrt{5}+\sqrt{3}\right)-14-7\sqrt{3}+4\sqrt{2}+4+\sqrt{3}-1\)

\(=4\sqrt{5}+4\sqrt{3}-6\sqrt{3}+4\sqrt{2}-11\)

\(=4\sqrt{5}-2\sqrt{3}+4\sqrt{2}-11\)

6 tháng 9 2023

\(M=\dfrac{8\left(\sqrt{5}+\sqrt{3}\right)}{5-3}+\dfrac{7\left(\sqrt{3}+2\right)}{3-4}+\dfrac{4\left(\sqrt{2}+1\right)}{2-1}+\dfrac{\sqrt{15}\left(\sqrt{3}-1\right)}{\sqrt{15}}\)

\(=4\sqrt{5}+4\sqrt{3}-7\sqrt{3}-14+4\sqrt{2}+4+\sqrt{3}-1\)

\(=4\sqrt{5}-2\sqrt{3}+4\sqrt{2}-11\)