So sánh
\(\sqrt{7}\) + \(\sqrt{15}\)
Vs \(\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\sqrt[3]{7}< \sqrt[3]{8}=2\) và \(\sqrt{15}< \sqrt{16}=4\), suy ra \(\sqrt[3]{7}+\sqrt{15}< 6\).
\(\sqrt{10}>\sqrt{9}=3\) và \(\sqrt[3]{28}>\sqrt[3]{27}=3\), suy ra \(\sqrt{10}+\sqrt[3]{28}>6\).
Vậy \(\sqrt[3]{7}+\sqrt{15}< \sqrt{10}+\sqrt[3]{28}\).
b: Ta có: \(4\sqrt{5}=\sqrt{4^2\cdot5}=\sqrt{80}\)
\(5\sqrt{3}=\sqrt{5^2\cdot3}=\sqrt{75}\)
mà 80>75
nên \(4\sqrt{5}>5\sqrt{3}\)
ta có \(\sqrt{7}\) sẽ nằm trong khoảng từ \(2\rightarrow3\)
còn \(\sqrt{15}\)sẽ nằm trong khoảng từ \(3\rightarrow4\)
mà \(3+4=7\) và \(\sqrt{7}< 3\)
\(\sqrt{15}< 4\)
\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)
\(7<9\Rightarrow\sqrt{7}<\sqrt{9}=3\)
\(15<16\Rightarrow\sqrt{15}<\sqrt{16}=4\)
\(\Rightarrow\sqrt{7}+\sqrt{15}<3+4=7\)
Nhầm
\(a^2=22-2\sqrt{105}=22-\sqrt{420}>22-\sqrt{441}=22-21=1\)
Kết luận giao luu=
1<a<2
Giao luu:
\(a=\sqrt{15}-\sqrt{7}\Rightarrow a^2=22-2\sqrt{105}>22-2.\sqrt{100}=22-20=2\)
\(\sqrt{15}>\sqrt{7}\Rightarrow a>0\Rightarrow a>\sqrt{2}>1\Rightarrow a>1\)
7 nhỏ hơn 9 nên căn 7 nhỏ hơn căn 9 hay căn 7 nhỏ hơn 3
15 nhỏ hơn 16 nên căn 15 nhỏ hơn căn 16 hay căn 15 nhỏ hơn 4
Vậy căn 7 + căn 15 nhỏ hơn 7
Do 21 lớn hơn 20 nên căn 21 lớn hơn căn 20
5 nhỏ hơn 6 nên căn 5 nhỏ hơn căn 6
Nên căn 21 trừ căn 5 lớn hơn căn 20 trừ căn 6
a) \(\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\)
Vậy \(\sqrt{7}+\sqrt{15}< 7\)
b) Vì \(\hept{\begin{cases}\sqrt{21}>\sqrt{20}\\-\sqrt{5}>-\sqrt{6}\end{cases}}\Rightarrow\sqrt{21}+\left(-\sqrt{5}\right)>\sqrt{20}+\left(-\sqrt{6}\right)\)
hay \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
\(A=\dfrac{2}{\sqrt{17}+\sqrt{15}}\) ; \(B=\dfrac{2}{\sqrt{15}+\sqrt{13}}\)
Mà \(\sqrt{17}+\sqrt{15}>\sqrt{15}+\sqrt{13}>0\)
\(\Rightarrow\dfrac{2}{\sqrt{17}+\sqrt{15}}< \dfrac{2}{\sqrt{15}+\sqrt{13}}\)
\(\Rightarrow A< B\)
\(A=\sqrt{17}-\sqrt{15}=\dfrac{2}{\sqrt{17}+\sqrt{15}}\)
\(B=\sqrt{15}-\sqrt{13}=\dfrac{2}{\sqrt{13}+\sqrt{15}}\)
mà \(\dfrac{2}{\sqrt{17}+\sqrt{15}}< \dfrac{2}{\sqrt{13}+\sqrt{15}}\)
nên A<B
So sánh
\(3\sqrt{3}-2\sqrt{2}vs2\)
\(\sqrt{7}+\sqrt{5}vs\sqrt{49}\)
\(\sqrt{2}+\sqrt{11}vs\sqrt{3}+5\)
Bạn bình phương các vế rồi rút gọn số nguyên, so sánh phần còn lại
Ta có \(a^2=15+2.\sqrt{15.14}+14=29+2.\sqrt{210}\)
\(b^2=17+2.\sqrt{17.12}+12=29+2.\sqrt{204}\)
Dễ thấy \(a^2>b^2\)mà a,b>0 suy ra a>b
a) \(15=\sqrt{225}\)
\(\sqrt{235}=\sqrt{235}\)
vi \(225< 235\)nen \(\sqrt{225}< \sqrt{235}\)
vay \(15< \sqrt{235}\)
Câu b)
Ta có \(\sqrt{7}< \sqrt{9}\Leftrightarrow\sqrt{7}< 3\)
\(\sqrt{15}< \sqrt{16}\Leftrightarrow\sqrt{15}< 4\)
Cộng theo vế: \(\sqrt{7}+\sqrt{15}< 3+4\) hay \(\sqrt{7}+\sqrt{15}< 7\)
Vs 7 nha mng