Tìm x để căn thức sau có nghĩa a. sqrt(- 3/(1 - 2x)) b.sqrt(2x+5/24)) c.sqrt(2x-16))+x-3/x-8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) ĐKXĐ: \(-1\le x\le3\)
c) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ne1\\x\ne3\end{matrix}\right.\).
d) ĐKXĐ: \(x< \dfrac{3}{5}\).
\(a,ĐK:\dfrac{3x-2}{5}\ge0\Leftrightarrow3x-2\ge0\left(5>0\right)\Leftrightarrow x\ge\dfrac{2}{3}\\ b,ĐK:\dfrac{2x-3}{-3}\ge0\Leftrightarrow2x-3\le0\left(-3< 0\right)\Leftrightarrow x\le\dfrac{3}{2}\)
\(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\ge2>0\forall x\in R\)
\(\Rightarrow\sqrt{x^2+2x+3}\) xác định với mọi x
a) ĐKXĐ: \(-x-8\ge0\Leftrightarrow x\le-8\)
b) ĐKXĐ: \(x^2-2x+1>0\Leftrightarrow\left(x-1\right)^2>0\Leftrightarrow x\ne1\)
c) ĐKXĐ: \(\left\{{}\begin{matrix}x-2\ge0\\5-x\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ne5\end{matrix}\right.\)
d) ĐKXĐ: \(x^2+3\ge0\left(đúng.do.x^2+3\ge3>0\right)\)
1) \(ĐK:x\in R\)
2) \(ĐK:x< 0\)
3) \(ĐK:x\in\varnothing\)
4) \(=\sqrt{\left(x+1\right)^2+2}\)
\(ĐK:x\in R\)
5) \(=\sqrt{-\left(a-4\right)^2}\)
\(ĐK:x\in\varnothing\)
a,\(\sqrt{\frac{x-3}{4-x}}\)
Biểu thức trên xác định
\(\Leftrightarrow\frac{x-3}{4-x}\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\4-x>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-3\le0\\4-x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge3\\4>x\end{cases}}\)hoặc \(\hept{\begin{cases}x\le3\\4< x\end{cases}}\)(loại)
Vậy biểu thức trên xác định khi \(3\le x< 4\)
b, \(\sqrt{\frac{x^2+2x+4}{2x-3}}\)
Biểu thức trên xác định \(\Leftrightarrow\frac{x^2+2x+4}{2x-3}\ge0\)
Ta có \(x^2+2x+4=\left(x+1\right)^2+3\ge3\forall x\)nên \(x^2+2x+4>0\forall x\)
=> Biểu thức trên xác định \(\Leftrightarrow2x-3>0\)
\(\Leftrightarrow2x>3\)
\(\Leftrightarrow x>\frac{3}{2}\)
Vậy biểu thức trên xác định khi \(x>\frac{3}{2}\)
a)\(\sqrt{\frac{x-3}{4-x}}\)có nghĩa \(\Leftrightarrow\frac{x-3}{4-x}\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\4-x>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-3\le0\\4-x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge3\\x< 4\end{cases}}\)hoặc \(\hept{\begin{cases}x\le3\\x>4\end{cases}}\)(Vô lí)
\(\Leftrightarrow3\le x< 4\)
b)\(\sqrt{\frac{x^2+2x+4}{2x-3}}\)có nghĩa \(\Leftrightarrow\frac{x^2+2x+4}{2x-3}\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x^2+2x+4\ge0\\2x-3>0\end{cases}}\)hoặc \(\hept{\begin{cases}x^2+2x+4\le0\\2x-3< 0\end{cases}}\)
mà \(x^2+2x+4=\left(x+1\right)^2+2\ge2\forall x\)
nên \(\hept{\begin{cases}\left(x+1\right)^2+2\ge2\\2x-3>0\end{cases}}\)
\(\Leftrightarrow x>\frac{3}{2}\)
a: ĐKXĐ: -3/(1-2x)>=0
=>1-2x>0
=>2x<1
=>x<1/2
b: ĐKXĐ: 2x+5/24>=0
=>2x>=-5/24
=>x>=-5/48
c: ĐKXĐ: 2x-16>=0 và x-8<>0
=>x>8
a) Để căn thức sqrt(-3/(1-2x)) có nghĩa, ta cần điều kiện:
1 - 2x > 0 (mẫu số không được bằng 0)
=> 1 > 2x
=> x < 1/2
b) Để căn thức sqrt((2x+5)/24) có nghĩa, ta cần điều kiện:
2x + 5 ≥ 0 (tử số không được âm)
=> 2x ≥ -5
=> x ≥ -5/2
c) Để căn thức sqrt(2x-16) + (x-3)/(x-8) có nghĩa, ta cần thỏa mãn hai điều kiện:
2x - 16 ≥ 0 (căn thức không được âm)
=> 2x ≥ 16
=> x ≥ 8
x ≠ 8 (mẫu số của phân số không được bằng 0)
Vậy, kết hợp hai điều kiện trên, ta có x > 8 và x ≠ 8. Tức là x > 8.