K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2017

Từ B vẽ BH là đường trung trực của DC ( H thuộc DC ) 

Ta có : .\(\widehat{ADC}\) = \(\widehat{BHC}\)= 90 độ \(\Rightarrow\)ABHD là hình thang cân \(\Rightarrow\)AD = BH = AB = DH = 4 (cm) và DH = HC = 4 (cm) (do BH là đường trung trực)\(\Leftrightarrow\)BHC là tam giác vuông cân \(\widehat{BCH}\)và \(\widehat{HBC}\)= 45 độ

 Từ đó : \(\widehat{ABH}\)\(\widehat{HBC}\)= \(\widehat{ABC}\) = 90 độ + 45 độ = 135 độ

Vậy các góc của hình thang vuông ABCD là \(\widehat{A}\)=\(\widehat{D}\)= 90 độ ( đề bài cho ) , \(\widehat{ABC}\)= 135 độ và \(\widehat{BCD}\)= 45 độ

14 tháng 2 2018

diện tích hình thang abcd

theo công thức S=1/2h(a+b)

có ab=3cm(ab=1/3CD);Ad=4cm(Ad là chiều cao);DC=9cm

suy ra: S= 1/2 nhân 4(3+9)=24

8 tháng 5 2018

Đáp án cần chọn là: D

Từ B kẻ BH vuông góc với CD.

Tứ giác ABHD là hình thang có hai cạnh bên AD // BH nên AD = BH, AB = DH.

Mặt khác, AB = AD = 2cm nên suy ra BH = DH = 2cm.

Do đó: HC = DC – HD = 4 – 2 = 2cm.

Tam giác BHC có BH = HC = 2cm nên tam giác BHC cân đỉnh H.

Lại có B H C ^ = 90 °  (do BH CD) nên tam giác BHC vuông cân tại H.

Do đó  B C H ^ = 180 ° - B H C ^ ÷ 2 = 180 ° - 90 ° ÷ 2 = 45 °

Xét hình thang ABCD có:

A B C ^ = 360 ° - A ^ + D ^ + C ^ = 360 ° - 90 ° + 90 ° + 45 ° = 135 °

Vậy A B C ^ = 135 ° .

a: Kẻ BH vuông góc CD

Xét tứ giác ABHD có

góc BAD=góc ADH=góc BHD=90 độ

AB=AD

=>ABHD là hình vuông

=>BH=HD=AB=DC/2

=>góc BDH=45 độ

DH=DC/2

=>H là trung điểm của DC

Xét ΔBDC có

BH vừa là đường cao, vừa là trung tuyến

=>ΔBDC cân tại B

=>góc C=45 độ

=>góc ABC=135 độ

c: DC=2*3=6cm

AD=AB=3cm

BC=căn 3^2+3^2=3*căn 2cm

C=6+3+3+3căn 2=12+3căn 2(cm)