Chứng minh tổng của một hình tròn bằng 360 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi A^1, B^1, C^1 là 3 góc trong của tam giác ABC. A^2, B^2,C^2 là 3 góc ngoài của tam giác ABC.
Ta có: A^1 + A^2 = 180* B^1 + B^2 = 180* C^1 + C^2 = 180*
---------------------
Cộng vế theo vế được: A^1 +B^1 +C^1 +A^2 +B^2 +C^2 = 3.180* mà A^1 +B^1 +C^1 = 180* (tổng 3 góc trong của tam giác)
=> A^2 +B^2 +C^2 = 3.180* - 180* = 2.180* = 360*
Gọi 3 góc ngoài ở 3 đỉnh của 1 tam giác lần lượt là A1;B1;C1 còn A2;B2;C2 là góc trong của tam giác.
Ta có:
A1 + A2 = 180o
B1 + B2 = 180o
C1 + C2 = 180o
=> A1+B1+C1+A2+B2+C2 = 360o
Mà A2 + B2 + C2 = 180o (tổng 3 góc trong của tam giác)
=> A1+B1+C1 = 360o-180o=180o.2 = 360o
Bởi vì nếu vẽ bất cứ một đường chéo nào trên tứ giác thì đều chia tứ giác thành hai tam giác. Mà tổng các góc trong 1 tam giác bằng 180 độ suy ra tổng các góc trong 1 tứ giác bằng 180. 2=360 độ
\(A+A_1+B+B_1+C+C_1=3.180\)
Mà A+B+C=180=> \(A_1+B_1+C_1=360\)
Gọi A^1, B^1, C^1 là 3 góc trong của tam giác ABC. A^2, B^2,C^2 là 3 góc ngoài của tam giác ABC.
Ta có:
A^1 + A^2 = 1800
B^1 + B^2 = 1800
C^1 + C^2 = 1800
---------------------
Cộng vế theo vế được:
A^1 +B^1 +C^1 +A^2 +B^2 +C^2 = 3.1800
mà A^1 +B^1 +C^1 = 1800 (tổng 3 góc trong của tam giác)
=> A^2 +B^2 +C^2 = 3.1800 - 1800 = 2.1800 = 3600
Xét tam giác ABC, có:ˆA1+ˆB+ˆC1=1800 (Tổng các góc của tam giác)Xét tam giác ADC, có:ˆA2+ˆD+ˆC2=1800 (Tổng các góc của tam giác)Xét tứ giác ABCD, có:ˆA+ˆB+ˆD+ˆC=ˆA1+ˆA2+ˆB+ˆD+ˆC1+ˆC2=(ˆA1+ˆB+ˆC1)+(ˆA2+ˆD+ˆC2)=1800+1800=3600⇒đpcm