K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2023

\(\sqrt{25\left(y+4\right)}+\sqrt{36\left(y+4\right)}-2\sqrt{81\left(y+4\right)}\)

\(=\sqrt{5^2\left(y+4\right)}+\sqrt{6^2\left(y+4\right)}-2\sqrt{9^2\left(y+4\right)}\)

\(=5\sqrt{y+4}+6\sqrt{y+4}-2\cdot9\sqrt{y+4}\)

\(=11\sqrt{y+4}-18\sqrt{y+4}\)

\(=-7\sqrt{y+4}\)

\(=5\sqrt{y+4}+6\sqrt{y+4}-2\cdot9\sqrt{y+4}\)

\(=11\sqrt{y+4}-18\sqrt{y+4}\)

\(=-7\sqrt{y+4}\)

16 tháng 10 2018

=(1/1+1/3+1/5+1/7+1/9).(1/2+1/4+1/6+1/8+1/10)

=(1+1/3+1/5+1/7+1/9).137/120

=258/315.137/120

=5891/6300

8 tháng 7 2023

\(a,\dfrac{3}{5}-\dfrac{1}{2}\sqrt{1\dfrac{11}{25}}=\dfrac{3}{5}-\dfrac{1}{2}\sqrt{\dfrac{36}{25}}=\dfrac{3}{5}-\dfrac{1}{2}.\dfrac{\sqrt{6^2}}{\sqrt{5^2}}=\dfrac{3}{5}-\dfrac{1}{2}.\dfrac{6}{5}=\dfrac{3}{5}-\dfrac{6}{10}=\dfrac{3}{5}-\dfrac{3}{5}=0\)

\(b,\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)=5^2-\left(2\sqrt{6}\right)^2=25-2^2.\sqrt{6^2}=25-4.6=25-24=1\)

\(c,\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\\ =\left|2-\sqrt{3}\right|+\sqrt{\sqrt{3^2}-2\sqrt{3}+1}\\ =2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}\\ =2-\sqrt{3}+\left|\sqrt{3}-1\right|\\ =2-\sqrt{3}+\sqrt{3}-1\\ =1\)

\(d,\dfrac{\left(x\sqrt{y}+y\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\left(dk:x,y>0\right)\\ =\dfrac{\left(\sqrt{x^2}.\sqrt{y}+\sqrt{y^2}.\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ =\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ =\sqrt{x^2}-\sqrt{y^2}\\ =\left|x\right|-\left|y\right|\\ =x-y\)

29 tháng 12 2021

d: \(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\4x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+4y=4\\4x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=2\end{matrix}\right.\)

2 tháng 12 2017

\(\sqrt{\frac{25}{4}}+\left(\sqrt{\frac{1}{2}}\right)^2:\left(\frac{-\sqrt{9}}{4}\right).\sqrt{\frac{16}{81}}-4^2-\left(-2\right)^3\)

\(=\frac{5}{2}+\frac{1}{2}:\frac{-3}{4}.\frac{4}{9}-16+8\)

\(=\frac{5}{2}-\frac{8}{27}-8\)

\(=\frac{-313}{54}\)

2 tháng 12 2017

-313/54

3 tháng 2 2020

Ta có: \(\sqrt{x\left(4-y\right)\left(4-z\right)}=\sqrt{x\left(16-4y-4z+yz\right)}=\sqrt{z\left[4\left(4-y-z\right)+yz\right]}\)

\(=\sqrt{x\left[4\left(x+\sqrt{xyz}\right)+yz\right]}=\sqrt{4x^2+4x\sqrt{xyz}+xyz}=2x+\sqrt{xyz}\)

Tương tự ta có: \(\sqrt{y\left(4-z\right)\left(4-z\right)}=2y+\sqrt{xyz}\)

Và: \(\sqrt{z\left(4-x\right)\left(4-y\right)}=2z+\sqrt{xyz}\)

Từ trên:

\(\Rightarrow T=2x+\sqrt{xyz}+2y+\sqrt{xyz}+2z+\sqrt{xyz}-\sqrt{xyz}\)

\(=2\left(x+y+z+\sqrt{xyz}\right)\)

\(=8\)

25 tháng 10 2022

a: \(=2\cdot\dfrac{5}{4}-3\cdot\dfrac{7}{6}+4\cdot\dfrac{9}{8}=\dfrac{5}{2}-\dfrac{7}{2}+\dfrac{9}{2}=\dfrac{7}{2}\)

b: \(=18-16\cdot\dfrac{1}{2}+\dfrac{1}{16}\cdot\dfrac{3}{4}\)

=10+3/64

=643/64

c: \(=\dfrac{2}{3}\cdot\dfrac{9}{4}-\dfrac{3}{4}\cdot\dfrac{8}{3}+\dfrac{7}{5}\cdot\dfrac{5}{14}=\dfrac{3}{2}-2+\dfrac{1}{2}=2-2=0\)

21 tháng 10 2018

a) = \(\frac{7}{2}\)

b) = \(\frac{643}{64}\)

c) = 0