K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2017

Mình nghĩ chỉ có 1 cách xếp !

4 tháng 7 2017
trẻ trâu mới lớp 6 đã đòi đăng bài lớp 7
24 tháng 3 2019

Đáp án C

22 tháng 8 2021

Hồng Phúc CTV, Nguyễn Việt Lâm

20 tháng 2 2018

Đáp án C.

26 tháng 2 2017

Đáp án C

Số cách sắp xếp 6 học sinh vào một bàn dài có 10 chỗ ngồi là số chỉnh hợp chập 6 của 10 phần tử. Vậy số cách sắp xếp là: A 10 6  

22 tháng 8 2021

Hồng Phúc CTV, Nguyễn Việt Lâm

22 tháng 8 2021

Có 3628800 cách xếp. 

Cách tìm giống như tìm cách viết của 1 số mà các chữ số khác nhau.

Bạn lần lượt lấy 10x9x8x7x6x5x4x3x2x1=3628800

11 tháng 4 2017

Chọn D

Nhóm có tất cả 9 học sinh nên số cách xếp 9 học sinh này ngồi vào một hàng có 9 ghế là 9! = 362880(cách).

Vậy số phần tử không gian mẫu là  n ( Ω ) = 362880

Đặt biến cố A: “ 3 học sinh lớp  không ngồi  ghế liền nhau”.

Giả sử  học sinh lớp 10 ngồi 3 ghế liền nhau. Ta xem 3 học sinh này là một nhóm

+/ Xếp X và 6 bạn còn lại vào ghế có 7! cách xếp.

+/ Ứng với mỗi cách xếp ở trên, có 3! cách xếp các bạn trong nhóm X.

Vậy theo quy tắc nhân ta có số cách xếp là: 7!.3! = 30240 (cách).

Suy ra số cách xếp để  học sinh lớp  không ngồi cạnh nhau là  (cách) .

Vậy xác suất để  học sinh lớp 10 không ngồi cạnh nhau là 362880 - 30240 = 332640 (cách)

=> n(A) = 332640

Vậy xác suất để  học sinh lớp 10 không ngồi cạnh nhau là 

15 tháng 6 2018

Do mỗi học sinh lớp 12 ngồi giữa hai học sinh khối 11 nên ở vị trí đầu tiên và cuối cùng của dãy ghế sẽ là học sinh khối 11.

Bước 1: Xếp 6 học sinh lớp 11 thành một hàng ngang, có 6! cách.

Bước 2: giữa 6 bạn học sinh lớp 11 có 5 khoảng trống, chọn 3 khoảng trống trong 5 khoảng trống để xếp các bạn lớp 12, có  cách( có liên quan đến thứ tự).

Theo quy tắc nhân có  cách xếp thỏa yêu cầu.

Chọn C.

ta có 2 TH sau:

*TH 1:hs khối 11 ngồi ở đầu bàn bên trái,tiếp đến là hs khối 12⇒10!.10!

*TH 2:hs khối 12 ngồi ở bàn đầu bên trái tiếp đến là hs khối 11⇒10!.10!

⇒2.10! x 10!=26336378880000

25 tháng 10 2021

5 dãy ghế mà bạn, nghĩa là mỗi dãy chỉ có 4 người thôi

DD
25 tháng 12 2022

- Đếm số cách để A và B ngồi cạnh nhau, C ngồi vị trí bất kì: 

Coi A, B là một người, có \(2!\) cách xếp vị trí A, B. 

Khi đó ta xếp vị trí của 9 người: \(9!\).

Có tổng số cách xếp là: \(2!.9!\).

- Đếm số cách để A và B ngồi cạnh nhau, C ngồi cạnh A. 

Coi A, B, C là một người. Có 2 cách xếp thỏa mãn là CAB, BAC. 

Khi đó ta xếp vị trí của \(8\) người: \(8!\).

Có số cách xếp là: \(2.8!\)

Vậy số cách xếp để A và B ngồi cạnh nhau, A và C không ngồi cạnh nhau là \(2!.9!-2.8!\).