Cho đa thức
p[x] 5xmu3 cộng 2xmu4 - xmu2 cộng 3xmu2 -xmu3 -2xmu4 cộng 1 -4xmu3
thu gọn và sắp sếp cá hạng tử của đa thức theo lũy thừa giảm giần
tính p[1] và p[-1]
chứng tỏ rằng đa thức ko có nghiệm
giúp mik cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, P(x)=5x3+2x4-x2+3x2-x3-2x4+1-4x3
= (5x3 -x3 -4x3)+(2x4 -2x4)+(-x2+3x2)+1
= 2x2 + 1
b, ta có: P(1)=2.12+1=2+1=3
ta có:P(-1)=2.(-1)2+1=2+1=3
c, vì x2 ≥ 0 với mọi x
=> 2x2 ≥0
=> 2x2+1 ≥1
=> P(x) > 0
vậy đa thức P(x) vô nghiệm.
a) \(P(x) = 5x^3 + 2x^4 - x^2 + 3x^2 - x^3 - 2x^4 +1 -4x^3\)
\(= (2x^4 - 2x^4) + (5x^3 - 4x^3 - x^3) + (-x^2 + 3x^2) + 1 \)
\(=2x^2 +1\)
b) \(P(1) = 2.1^2 +1 = 2 + 1 = 3\)
\(P(-1) = 2.(-1)^2 + 1 = 2 + 1 = 3\)
c) Vì \(2x^2 \geq 0 \) với mọi x; 1 > 0 nên \(2x^2 + 1 > 0\) hay P(x) > 0 với mọi x
=> Đa thức trên không có nghiệm
\(p\left(x\right)=5x^3+2x^4-x^2+3x^2-x^3-2x^4+1-4x^3\)
a, \(p\left(x\right)=2x^2+1\)( thu gọn và sắp xếp )
b, Đặt \(2x^2+1=0\Leftrightarrow2x^2=-1\Leftrightarrow x^2=-\frac{1}{2}\)( vô lí )
Do \(x^2\ge0\forall x;-\frac{1}{2}< 0\)Vây đa thức ko có nghiệm ( đpcm )
a.\(P\left(x\right)=1+3x^5-4x^2+x^5+x^3-x^2+3x^3\)
\(=1-5x^2+4x^3+4x^5\)
\(Q\left(x\right)=2x^5-x^2+4x^5-x^4+4x^2-5x\)
\(=-5x+3x^2+3x^4+2x^5\)
b.\(P\left(x\right)+Q\left(x\right)=1-5x^2+4x^3+4x^5-5x+3x^2+3x^4+2x^5\)
\(=6x^5+3x^4+4x^3-2x^2-5x+1\)
\(P\left(x\right)-Q\left(x\right)=1-5x^2+4x^3+4x^5+5x-3x^2-3x^4-2x^5\)
\(=2x^5-3x^4+4x^3-8x^2+5x+1\)
c.\(P\left(x\right)+Q\left(x\right)=6x^5+3x^4+4x^3-2x^2-5x+1\)
\(x=-1\)
\(P\left(x\right)+Q\left(x\right)=6.\left(-1\right)^5+3.\left(-1\right)^4+4.\left(-1\right)^3-5.\left(-1\right)+1\)
\(=-6+3-4+5+1=-1\)
d.\(Q\left(0\right)=\)\(-5x+3x^2+3x^4+2x^5\)
\(=0\)
\(P\left(0\right)=\)\(1-5x^2+4x^3+4x^5\)
\(=1\)
Vậy x=0 ko là nghiệm của đa thức P(x)
a, \(P(x)=3x^4+x^2-3x^4+5\\ = (3x^4-3x^4)+x^2+5\\ = x^2+5\)
b, \(P(0)=0^2+5=5\\ P(-3)=(-3)^2+5=-9+5=-4\)
c, Ta có: x2 ≥ 0 với mọi x
Nên x2 + 5 > 5
Hay P(x) > 5
Vậy P(x) không có nghiệm