K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2017

đặt \(A=\sqrt{7-\sqrt{10}}-3\sqrt{2}\)

\(\Leftrightarrow\sqrt{2}A=\sqrt{14-2\sqrt{10}}-3\)

\(=\sqrt{\left(\sqrt{10}-2\right)^2}-3=\sqrt{10}-5\)

\(\Rightarrow A=\frac{\sqrt{10}-5}{\sqrt{2}}\)

\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\cdot\sqrt{7}+7\sqrt{8}\)

\(=\left(3\sqrt{7}-2\sqrt{14}\right)\cdot\sqrt{7}+14\sqrt{2}\)

\(=21-14\sqrt{2}+14\sqrt{2}\)

=21

4 tháng 8 2021

thank

AH
Akai Haruma
Giáo viên
11 tháng 8 2021

Câu 1,2 bạn đã đăng và có lời giải rồi

Câu 3:

\(=\frac{(\sqrt{3})^2+(2\sqrt{5})^2-2.\sqrt{3}.2\sqrt{5}}{\sqrt{2}(\sqrt{3}-2\sqrt{5})}=\frac{(\sqrt{3}-2\sqrt{5})^2}{\sqrt{2}(\sqrt{3}-2\sqrt{5})}=\frac{\sqrt{3}-2\sqrt{5}}{\sqrt{2}}\)

12 tháng 5 2021

\(\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-3}\right):\dfrac{\sqrt{x}}{\sqrt{x}-3}\) Đk: \(\left\{{}\begin{matrix}x>0\\x\ne9\end{matrix}\right.\)

\(\dfrac{2\sqrt{x}+x+2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}}\)

\(\dfrac{\sqrt{x}\left(\sqrt{x}+4\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\)

\(\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\)

 

AH
Akai Haruma
Giáo viên
6 tháng 8 2021

Lời giải:

$\sqrt{7+2\sqrt{10}}=\sqrt{2+5+2\sqrt{2.5}}=\sqrt{(\sqrt{2}+\sqrt{5})^2}=\sqrt{2}+\sqrt{5}$

\(\sqrt[3]{3\sqrt[3]{3}-3\sqrt[3]{2}-1}=\sqrt[3]{(1-\sqrt[3]{2})^3}=1-\sqrt[3]{2}\)

Do đó:

\(\text{TS}=\sqrt[3]{2}+\sqrt{2}+\sqrt{5}+1-\sqrt[3]{2}=\sqrt{2}+\sqrt{5}+1=\text{MS}\)

\(A=\frac{\text{TS}}{\text{MS}}=1\)

 

10 tháng 11 2021

\(=\dfrac{5-3\sqrt{5}+10+6\sqrt{5}}{\left(\sqrt{5}-3\right)\left(\sqrt{5}+3\right)}-\dfrac{2\sqrt{10}+2}{\sqrt{3}-\sqrt{2}}\\ =\dfrac{15+3\sqrt{5}}{5-9}-\left(2\sqrt{10}+2\right)\left(\sqrt{3}+\sqrt{2}\right)\\ =-2\sqrt{30}-4\sqrt{5}-2\sqrt{3}-2\sqrt{2}-\dfrac{15+3\sqrt{5}}{4}\\ =\dfrac{-8\sqrt{30}-16\sqrt{5}-8\sqrt{3}-8\sqrt{2}-15-3\sqrt{5}}{4}\\ =\dfrac{-8\sqrt{30}-19\sqrt{5}-8\sqrt{3}-8\sqrt{2}-15}{4}\)

21 tháng 6 2023

\(=\dfrac{1}{\sqrt{11-2\sqrt{5}.\sqrt{6}}}-\dfrac{3\left(7+2\sqrt{10}\right)}{\left(7-2\sqrt{10}\right)\left(7+2\sqrt{10}\right)}\\ =\dfrac{1}{\sqrt{\left(\sqrt{5}-\sqrt{6}\right)^2}}-\dfrac{3\left(7+2\sqrt{10}\right)}{49-40}\\ =\dfrac{1}{\left|\sqrt{5}-\sqrt{6}\right|}-\dfrac{7+2\sqrt{10}}{3}\\ =\dfrac{1}{\sqrt{6}-\sqrt{5}}-\dfrac{7+2\sqrt{10}}{3}\\ =\dfrac{\sqrt{6}+\sqrt{5}}{6-5}-\dfrac{7+2\sqrt{10}}{3}\\ =\sqrt{6}+\sqrt{5}+\dfrac{7+2\sqrt{10}}{3}\\ =\dfrac{3\sqrt{6}+3\sqrt{5}+7+2\sqrt{10}}{3}\)

\(=\dfrac{1}{\sqrt{6}-\sqrt{5}}+\dfrac{7+2\sqrt{10}}{3}\)

\(=\sqrt{6}+\sqrt{5}+\dfrac{7}{3}+\dfrac{2}{3}\sqrt{10}\)

1 tháng 7 2021

\(a,=\sqrt{6+2\sqrt{3-2\sqrt{3}+1}}\)

\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)

\(=\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

\(b,=\sqrt{6-2\sqrt{3+\sqrt{12+2\sqrt{12}+1}}}\)

\(=\sqrt{6-2\sqrt{3+\sqrt{12}+1}}\)

\(=\sqrt{6-2\sqrt{3+2\sqrt{3}+1}}\)

\(=\sqrt{6-2\left(\sqrt{3}+1\right)}=\sqrt{6-2\sqrt{3}-2}=\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{3-2\sqrt{3}+1}=\sqrt{3}-1\)

\(c,=\sqrt{\sqrt{3}+\sqrt{48-10\sqrt{4+2.2\sqrt{3}+3}}}\)

\(=\sqrt{\sqrt{3}+\sqrt{48-10\left(2+\sqrt{3}\right)}}\)

\(=\sqrt{\sqrt{3}+\sqrt{28-10\sqrt{3}}}\)

\(=\sqrt{\sqrt{3}+\sqrt{25-2.5\sqrt{3}+3}}\)

\(=\sqrt{\sqrt{3}+5-\sqrt{3}}=\sqrt{5}\)

\(d,=\sqrt{23-6\sqrt{10+4\sqrt{2-2\sqrt{2}+1}}}\)

\(=\sqrt{23-6\sqrt{6+4\sqrt{2}}}\)

\(=\sqrt{23-6\sqrt{4+2.2\sqrt{2}+2}}\)

\(=\sqrt{23-6\sqrt{\left(2+\sqrt{2}\right)^2}}\)

\(=\sqrt{23-12-6\sqrt{2}}=\sqrt{11-6\sqrt{2}}\)

\(=\sqrt{9-2.3\sqrt{2}+2}=3-\sqrt{2}\)

a) Ta có: \(\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)

\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)

\(=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)

b) Ta có: \(\sqrt{6-2\sqrt{3+\sqrt{13+4\sqrt{3}}}}\)

\(=\sqrt{6-2\sqrt{4+2\sqrt{3}}}\)

\(=\sqrt{6-2\left(\sqrt{3}+1\right)}\)

\(=\sqrt{4-2\sqrt{3}}=\sqrt{3}-1\)

c) Ta có: \(\sqrt{\sqrt{3}+\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)

\(=\sqrt{\sqrt{3}+\sqrt{48-10\left(2+\sqrt{3}\right)}}\)

\(=\sqrt{\sqrt{3}+\sqrt{28-10\sqrt{3}}}\)

\(=\sqrt{\sqrt{3}+5-\sqrt{3}}\)

\(=\sqrt{5}\)

d) Ta có: \(\sqrt{23-6\sqrt{10+4\sqrt{3-2\sqrt{2}}}}\)

\(=\sqrt{23-6\sqrt{10+4\left(\sqrt{2}-1\right)}}\)

\(=\sqrt{23-6\sqrt{6-4\sqrt{2}}}\)

\(=\sqrt{23-6\left(2-\sqrt{2}\right)}\)

\(=\sqrt{11+6\sqrt{2}}\)

\(=3+\sqrt{2}\)

Ta có: \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}\)

\(=\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}\)

=5

a) \(M=\sqrt[3]{7+5\sqrt{2}}\)

Ta có:

Vì \(7+5\sqrt{2}=\left(\sqrt{2}\right)^3+1+3\sqrt{2}.1\left(\sqrt{2}+1\right)=\left(\sqrt{2}+1\right)^3\)

Nên \(M=\sqrt[3]{\left(\sqrt{2}+1\right)^3}=\sqrt{2}+1\)

b) \(N=\sqrt[3]{6\sqrt{3}-10}\)

Ta có:

Vì \(6\sqrt{3}-10=\left(\sqrt{3}\right)^3-1^3-3\sqrt{3}.1\left(\sqrt{3}-1\right)=\left(\sqrt{3}-1\right)^3\)

Nên \(N=\sqrt[3]{\left(\sqrt{3}-1\right)^3=\sqrt{3}-1}\)