GIẢI GIÙM MÌNH HỆ GỒM HAI PT NÀY VỚI
\(y^3+3y^2+y+4x^2-22x+21=\left(2x+1\right)\sqrt{2x-1}\)
\(2x^2-11x+9=2y\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(\left\{{}\begin{matrix}4x^2+2y+2\ge0\\3x+y\ge0\end{matrix}\right.\)
Ta có : \(\left(\sqrt{4x^2+3}-2x\right)\left(\sqrt{y^2-2y+4}-y+1\right)=3\)
\(\Leftrightarrow\dfrac{3}{\sqrt{4x^2+3}+2x}.\dfrac{3}{\sqrt{y^2-2y+4}+y-1}=3\)
\(\Leftrightarrow\left(\sqrt{4x^2+3}+2x\right)\left(\sqrt{y^2-2y+4}+y-1\right)=3\)
\(\Rightarrow\left(\sqrt{4x^2+3}+2x\right)\left(\sqrt{y^2-2y+4}+y-1\right)=\left(\sqrt{4x^2+3}-2x\right)\left(\sqrt{y^2-2y+4}-y+1\right)\)
\(\Leftrightarrow2x\sqrt{y^2-2y+4}+\left(y-1\right).\sqrt{4x^2+3}=0\)
\(\Leftrightarrow2x\sqrt{y^2-2y+4}=\left(1-y\right).\sqrt{4x^2+3}\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x^2.\left(y^2-2y+4\right)=\left(y^2-2y+1\right).\left(4x^2+3\right)\\2x.\left(1-y\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x^2=y^2-2y+1\\2x\left(1-y\right)\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}2x=y-1\\2x=1-y\end{matrix}\right.\\2x\left(1-y\right)\ge0\end{matrix}\right.\)
Với 2x = 1 - y
Khi đó ta có \(\sqrt{4x^2+2y+2}-\sqrt{3x+y}=2x+1\)
\(\Leftrightarrow\sqrt{4x^2-4x+4}-\sqrt{x+1}=2x+1\) (ĐK : \(x\ge-1\))
\(\Leftrightarrow2\sqrt{x^2-x+1}-\sqrt{x+1}=2x+1\)
\(\Leftrightarrow2\left(\sqrt{x^2-x+1}-1\right)=2x+\sqrt{x+1}-1\)
\(\Leftrightarrow\dfrac{2x\left(x-1\right)}{\sqrt{x^2-x+1}+1}=2x+\dfrac{x}{\sqrt{x+1}+1}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{2x-2}{\sqrt{x^2-x+1}}=2+\dfrac{1}{\sqrt{x+1}+1}\left(1\right)\end{matrix}\right.\)
Phương trình (1)
<=> \(\dfrac{2\left(x+1\right)}{\sqrt{x^2-x+1}}=2+\dfrac{1}{\sqrt{x+1}+1}+\dfrac{4}{\sqrt{x^2-x+1}}\)
Xét vế trái : \(\dfrac{2\left(x+1\right)}{\sqrt{x^2-x+1}}=\sqrt{\dfrac{4x^2+4x+1}{x^2-x+1}}=\sqrt{\dfrac{5x^2-5x+5-x^2+9x-4}{x^2-x+1}}\)
\(=\sqrt{5-\dfrac{x^2-9x+4}{x^2-x+1}}< \sqrt{5}\) (2)
Lại có \(2+\dfrac{1}{\sqrt{x+1}+1}+\dfrac{4}{\sqrt{x^2-x+1}}\)
\(=2+\dfrac{1}{\sqrt{x+1}+1}+\dfrac{1}{\sqrt{x^2-x+1}}+\dfrac{1}{\sqrt{x^2-x+1}}+\dfrac{1}{\sqrt{x^2-x+1}}+\dfrac{1}{\sqrt{x^2-x+1}}\)
\(\ge2+\dfrac{\left(1+1+1+1+1\right)^2}{\sqrt{x+1}+1+4\sqrt{x^2-x+1}}=2+\dfrac{25}{\sqrt{x+1}+1+4\sqrt{x^2-x+1}}\)
Dấu "=" khi \(\dfrac{1}{\sqrt{x+1}+1}=\dfrac{1}{\sqrt{x^2-x+1}}\Leftrightarrow\left[{}\begin{matrix}x\approx3,498374325\\x\approx-0,7385661113\end{matrix}\right.\)
Khi đó \(VP\ge3,6\) (3)
Từ (3) và (2) => (1) vô nghiệm
Vậy x = 0 => y = 1
Với 2x = y - 1 kết hợp điều kiện 2x(1 - y) \(\ge0\)
ta được x = 0 ; y = 1
Vậy (x ; y) = (0;1)
a.
ĐKXĐ: \(1\le x\le7\)
\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)
\(\Leftrightarrow...\)
b. ĐKXĐ: ...
Biến đổi pt đầu:
\(x\left(y-1\right)-\left(y-1\right)^2=\sqrt{y-1}-\sqrt{x}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow a^2b^2-b^4=b-a\)
\(\Leftrightarrow b^2\left(a+b\right)\left(a-b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(b^2\left(a+b\right)+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt{x}=\sqrt{y-1}\Rightarrow y=x+1\)
Thế vào pt dưới:
\(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)
\(\Leftrightarrow3\left(x-\sqrt{5x-4}\right)+7-x-3\sqrt{5-x}=0\)
\(\Leftrightarrow\dfrac{3\left(x^2-5x+4\right)}{x+\sqrt{5x-4}}+\dfrac{x^2-5x+4}{7-x+3\sqrt{5-x}}=0\)
\(\Leftrightarrow\left(x^2-5x+4\right)\left(\dfrac{3}{x+\sqrt{5x-4}}+\dfrac{1}{7-x+3\sqrt{5-x}}\right)=0\)
\(\Leftrightarrow...\)
ĐKXĐ:...
Biến đổi pt đầu:
\(2y\left(y-2x\right)+2\left(y-2x\right)+y-1=3\sqrt{\left(y-1\right)\left(y+1\right)\left(y-2x\right)}\)
\(\Leftrightarrow2\left(y+1\right)\left(y-2x\right)+y-1=3\sqrt{\left(y-1\right)\left(y+1\right)\left(y-2x\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{y-1}=a\\\sqrt{\left(y+1\right)\left(y-2x\right)}=b\end{matrix}\right.\) ta được:
\(a^2+2b^2=3ab\Leftrightarrow\left(a-b\right)\left(a-2b\right)=0\Rightarrow\left[{}\begin{matrix}a=b\\a=2b\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{y-1}=\sqrt{\left(y+1\right)\left(y-2x\right)}\left(1\right)\\\sqrt{y-1}=2\sqrt{\left(y+1\right)\left(y-2x\right)}\left(2\right)\end{matrix}\right.\)
Bình phương 2 vế phương trình dưới:
\(\Leftrightarrow y+1+y-2x+2\sqrt{\left(y+1\right)\left(y-2x\right)}=2y-2x+2\)
\(\Leftrightarrow2\sqrt{\left(y+1\right)\left(y-2x\right)}=1\) (3)
TH1: thế (1) vào (3) ta được:
\(2\sqrt{y-1}=1\Rightarrow y-1=\frac{1}{4}\Rightarrow y=\frac{5}{4}\Rightarrow x=\frac{41}{72}\)
TH2: thế (2) vào (3) ta được:
\(\sqrt{y-1}=1\Rightarrow y=2\Rightarrow x=\frac{23}{24}\)
ĐK: \(x\ge\frac{1}{2}\)
\(\hept{\begin{cases}x\left(2x-2y-1\right)=3\left(y+2\right)\left(1\right)\\3y+6\sqrt{2x-1}=y^2-x+23\left(2\right)\end{cases}}\)
pt (1) <=> \(2x^2-2xy-x-3y-6=0\)
<=> \(2x^2-x\left(2y+1\right)-\left(3y+6\right)=0\)
có \(\Delta=\left(2y+1\right)^2+4\left(3y+6\right)=4y^2+28y+49=\left(2y+7\right)^2\)
=> (1) có hai nghiệm: \(\orbr{\begin{cases}x_1=\frac{\left(2y+1\right)-\left(2y+7\right)}{4}=-\frac{3}{2}\left(loai\right)\\x_2=\frac{\left(2y+1\right)+\left(2y+7\right)}{4}=y+2\end{cases}}\)
+) Với \(x=y+2\) thế vào (2) ta có:
\(3y+6\sqrt{2\left(y+2\right)-1}=y^2-\left(y+2\right)+23\)
<=> \(6\sqrt{2y+3}=y^2-4y+21\)
ĐK: \(y\ge-\frac{3}{2}\)
\(6\sqrt{2y+3}=y^2-4y+21\)
<=> \(6\sqrt{2y+3}-2y-12=y^2-6y+9\)
<=> \(\frac{2\left(9\left(2y+3\right)-\left(y+6\right)^2\right)}{3\sqrt{2y+3}+y+6}-\left(y-3\right)^2=0\)
<=> \(\frac{-2\left(y-3\right)^2}{3\sqrt{2y+3}+y+6}-\left(y-3\right)^2=0\)
<=> \(\left(y-3\right)^2\left(\frac{-2}{3\sqrt{2y+3}+y+6}-1\right)=0\)
<=> y - 3 = 0
<=> y = 3 thỏa mãn
khi đó x = y + 2 = 3 + 2 = 5 thỏa mãn
Kết luận:...
Câu 1: ĐK: x khác -1/2, y khác -2
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:
\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)
=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)
Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>
\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)
\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)
\(\Leftrightarrow a^2+1=2a\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)