K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2020

Ta có: \(2^{30}+3^{30}+4^{30}=\left(2^3\right)^{10}+\left(3^3\right)^{10}+\left(4^3\right)^{10}=8^{10}+27^{10}+64^{10}\)

\(3^{20}+6^{20}+8^{20}=\left(3^2\right)^{10}+\left(6^2\right)^{10}+\left(8^2\right)^{10}=9^{10}+36^{10}+64^{10}\)

Vì \(8< 9\)\(\Rightarrow8^{10}< 9^{10}\)

mà \(27< 36\)\(\Rightarrow27^{10}< 36^{10}\)

\(\Rightarrow8^{10}+27^{10}< 9^{10}+36^{10}\)

\(\Rightarrow8^{10}+27^{10}+64^{10}< 9^{10}+36^{10}+64^{10}\)

hay \(2^{30}+3^{30}+4^{30}< 3^{20}+6^{20}+8^{20}\)

13 tháng 9 2020

so sánh: 2^30 + 3^30 + 4^30 và 3^20 + 6^20 + 8^20
2^30 = ( 2^3)^10 = 8^ 10
3^30 = (3^3)^10 = 27^10
4^30 = (4^3)^10 = 64^10
3^20 = (3^2)^10 = 9^10
6^20 = (6^2) = 36^10
8^20 = (8^2)^10 = 84^10
vì 9^10 > 8^10
36^10 > 27^10
84^10 > 64^10
=> 2^30 + 3^30 + 4^30 < 3^20 + 6^20 + 8^20

19 tháng 6 2016

a,Tính tổng:S=1+52+54+...+5200

=>52S=52+54+56+...+5202

=>25S-S=24S=5202-1

=>S=\(\frac{5^{202}-1}{24}\)

b,So sánh 230+330+430 và 3.2410

3.24^10=3^11.4^15 
4^30=4^15.4^15 
hiển nhiên 4^15>3^11 
=>3.24^10<<4^30<<<2^30+3^20+4^30

12 tháng 6 2017

Ta có: 230+330+430>230+230+430=231+230.230

                                                                 =231(1+229) (1)

Lại có:3.24^10=3^11.2^30 (2)

So sánh (1)và (2): Vì 3^11<4^11=2^22<2^29

                              và 2^30<2^31

=> 3^11.2^30 <(1+2^29)2^31<2^30+3^30+4^30

16 tháng 8 2021

230+330+430 < 3.3210

16 tháng 8 2021

<

17 tháng 8 2021

bạn ghi sai đề :)))

17 tháng 8 2021

undefined

20 tháng 9 2021

\(1,\\ \left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\\ \Leftrightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-7\right)^{x+1}=0\\\left(x-7\right)^{10}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x-7=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=8\end{matrix}\right.\)

\(2,\\ a,\left|2x-3\right|>5\Leftrightarrow\left[{}\begin{matrix}2x-3< -5\\2x-3>5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< -1\\x>4\end{matrix}\right.\\ b,\left|3x-1\right|\le7\Leftrightarrow\left[{}\begin{matrix}3x-1\le7\\1-3x\le7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\le\dfrac{8}{3}\\x\ge-2\end{matrix}\right.\\ c,\cdot x< -\dfrac{3}{2}\\ \Leftrightarrow5-3x+\left(-2x-3\right)=7\Leftrightarrow2-5x=7\Leftrightarrow x=-1\left(ktm\right)\\ \cdot-\dfrac{3}{2}\le x\le\dfrac{5}{3}\\ \Leftrightarrow\left(5-3x\right)+\left(2x+3\right)=7\Leftrightarrow8-x=7\Leftrightarrow x=1\left(tm\right)\\ \cdot x>\dfrac{5}{3}\\ \Leftrightarrow\left(3x-5\right)+\left(2x+3\right)=7\Leftrightarrow5x-2=7\Leftrightarrow x=\dfrac{9}{5}\left(tm\right)\\ \Leftrightarrow S=\left\{1;\dfrac{9}{5}\right\}\)

 

 

19 tháng 9 2021

Mai lam

 

30 tháng 10 2021

11. viết lại đề

12. B

30 tháng 10 2021

C / A

2 tháng 1 2020

10 tháng 7 2018

\(5^{40}=\left(5^4\right)^{10}=625^{10}\)

Mà \(625^{10}>620^{10}\Rightarrow5^{40}>620^{10}\)

Vậy 540 > 62010 ( đpcm )

10 tháng 7 2018

Ta có :

\(5^{40}=\left(5^4\right)^{10}=625^{10}\)

Vì \(625>620\Rightarrow625^{10}>620^{10}\)

Hay \(5^{40}>620^{10}\)

Vậy  \(5^{40}>620^{10}\)

_Chúc bạn học tốt_

Khi nhìn trực tiếp vào phân số ta có thể thấy :

\(\frac{211}{331} < \frac{217}{331} < \frac{217}{330}\)

Vậy \(\frac{211}{331} < \frac{217}{330}\)