K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2023

Xét \(y=0\Rightarrow x=\pm8\)

Với \(y\ge1\), ta thấy \(x⋮6\) và \(y⋮2\) (vì nếu \(y\) lẻ thì \(3^y\) chia 4 dư 3, vô lí)

\(x=3k,y=2l\left(k,l\inℤ,l\ge2\right)\) (nếu \(l=1\) thì \(y=2\Rightarrow x^2=72\), vô lí)

pt đã cho trở thành \(k^2=3^{2l-2}+7\) 

\(\Leftrightarrow k^2-\left(3^{l-1}\right)^2=7\)

\(\Leftrightarrow\left(k+3^{l-1}\right)\left(k-3^{l-1}\right)=7\)

Do \(k+3^{l-1}>k-3^{l-1}\) nên ta xét 2TH

TH1: \(\left\{{}\begin{matrix}k+3^{l-1}=7\\k-3^{l-1}=1\end{matrix}\right.\). Cộng theo vế  \(\Rightarrow2k=8\Rightarrow k=4\Rightarrow x=3k=12\) \(\Rightarrow3^y=x^2-63=144-63=81\Rightarrow y=4\)

Vậy ta tìm được cặp \(\left(x,y\right)=\left(12,4\right)\), thử lại thấy thỏa mãn.

TH2: \(\left\{{}\begin{matrix}k+3^{l-1}=-1\\k-3^{l-1}=-7\end{matrix}\right.\)

Cộng theo vế \(\Rightarrow2k=-8\Rightarrow k=-4\Rightarrow x=-12\)

\(\Rightarrow3^y=x^2-63=144-63=81\Rightarrow y=4\)

Vậy ta tìm được thêm cặp số \(\left(x;y\right)=\left(-12;4\right)\). Như vậy, pt đã cho có các nghiệm nguyên \(\left(x;y\right)\in\left\{\left(\pm8;0\right);\left(\pm12;4\right)\right\}\)

1 tháng 2 2021

\(2x+3y=7 \\ \Leftrightarrow x=\dfrac{-7-3y}{2} \)

PT có nghiệm nguyên \(\Leftrightarrow -7-3y \vdots 2 \\ \Leftrightarrow (-7-3y \in Ư(2) \\ \Leftrightarrow -7-3y \in {-2;2;-1;1} \\ \Leftrightarrow y \in {\dfrac{-5}{3} (L) ; -3(TM); -2(TM) ; \dfrac{-8}{3} (L)} \)

- Với \(y=-3\) có: \(x=1\).

- Với \(y=-2\) có: \(x=\dfrac{-1}{2} (L)\)

Vậy \((x;y)=(-3;1)\) là nghiệm nguyên duy nhất của phương trình.

1 tháng 2 2021

- Nếu sai thì cứ báo cáo + xóa ạ. =(((

22 tháng 4 2018

\(pt\Leftrightarrow x\left(y-2\right)=-3y-1\)

\(\Leftrightarrow x=\frac{-3y-1}{y-2}=\frac{\left(-3y+6\right)-7}{y-2}=-3-\frac{7}{y-2}\)

Để \(x\inℤ\)thì \(\frac{7}{y-2}\inℤ\)

\(\Leftrightarrow y-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

lần lượt thay các giá trị của y-2 ta tìm dc các cặp nghiệm (x;y) là:

(-2; -5); (4; 1); (-10; 3); (-4; 9)

4 tháng 3 2020

Biểu diễn y theo x :

\(\left(2x+3\right)y=5x+11\)

Dễ thấy :\(2x+3\) khác \(0\) (vì x là số nguyên) do đó:

            \(y=\frac{5x+11}{2x+3}=2+\frac{x+5}{2x+3}\)

Để \(y\)  \(\in\) \(Z\) thì \(x+5\) chia hết cho \(2x+3\)

           \(\implies\) \(2.\left(x+5\right)\) chia hết cho \(2x+3\)

           \(\implies\)   \(2x+10\)   chia hết cho  \(2x+3\) 

           \(\implies\)   \(2x+3+7\) chia hết cho \(2x+3\) 

           \(\implies\)  \(7\) chia hết cho \(2x+3\)

           \(\implies\)  \(2x+3\) \(\in\)   \(Ư\)(\(7\))={ \(1;-1;7;-7\) }

Ta có bảng sau:

\(2x+3\)\(1\)\(-1\)\(7\)\(-7\)
\(x\)\(-1\)\(-2\)\(2\)\(-5\)
\(y\)\(6\)\(-1\)\(3\)\(2\)

Vậy \(\left(x;y\right)\) \(\in\) {\(\left(-1;6\right),\left(-2;-1\right),\left(2;3\right),\left(-5;2\right)\) }

NV
19 tháng 1

\(\Leftrightarrow4x^2-12xy+12y^2=12y\)

\(\Leftrightarrow\left(2x-3y\right)^2=12y-3y^2\)

Do \(\left(2x-3y\right)^2\ge0;\forall x;y\Rightarrow12y-3y^2\ge0\)

\(\Rightarrow y^2-4y+4\le4\)

\(\Rightarrow\left(y-2\right)^2\le4\)

\(\Rightarrow\left[{}\begin{matrix}\left(y-2\right)^2=0\\\left(y-2\right)^2=1\\\left(y-2\right)^2=4\end{matrix}\right.\)  \(\Rightarrow y=\left\{0;1;2;3;4\right\}\)

Lần lượt thế vào pt ban đầu ta được các cặp nghiệm:

\(\left(x;y\right)=\left(0;0\right);\left(0;1\right);\left(3;1\right);\left(3;3\right);\left(6;3\right);\left(6;4\right)\)

24 tháng 6 2021

Do VP là số lẻ

<=> 2x + 5y + 1 là số lẻ và \(2^{\left|x\right|}+y+x^2+x\) là số lẻ

<=> y chẵn và \(2^{\left|x\right|}+y+x\left(x+1\right)\) là số lẻ 

=> \(2^{\left|x\right|}\) là số lẻ (do y chẵn và x(x+1) chẵn)

=> x = 0

PT <=> \(\left(5y+1\right)\left(1+y\right)=105\)

<=> y = 4 (thử lại -> thỏa mãn)

KL: x = 0; y = 4

26 tháng 11 2021

sai r nha tại x là nguyên dương nên khác 0 chứ :)))

16 tháng 2 2021

2x - 3y = 1.

=> y = 2/3x - 1/3

=> Nghiệm tổng quát của phương trình 2x - 3y = 1 là đường thẳng y = 2/3x - 1/3