sqrt(x ^ 2 - 6x + 12) Giúp mình vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐK:x\ge0;x\ne4\\ P=\dfrac{5x+10\sqrt{x}-\left(3-\sqrt{x}\right)\left(\sqrt{x}-2\right)-6x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ P=\dfrac{5x+10\sqrt{x}-5\sqrt{x}+6+x-6x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ P=\dfrac{5\sqrt{x}+6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{5\sqrt{x}}{\sqrt{x}-2}-\dfrac{3-\sqrt{x}}{\sqrt{x}+2}+\dfrac{6x}{4-x}\left(đk:x\ge0,x\ne4\right)\)
\(=\dfrac{5\sqrt{x}\left(\sqrt{x}+2\right)-\left(3-\sqrt{x}\right)\left(\sqrt{x}-2\right)-6x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{5x+10\sqrt{x}+x-5\sqrt{x}+6-6x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{5\sqrt{x}+6}{x-4}\)
Câu ( a ) sai đề !!!
b )
\(\left(x+4\right)\sqrt{x^3+9}=x^3+x+12\)
\(\Leftrightarrow\left[\left(x+4\right)\sqrt{x^3+9}\right]^2=\left(x^3+x+12\right)^2\)
\(\Leftrightarrow\left(x+4\right)^2.\left(x^3+9\right)=\left(x^3+x\right)^2+2.\left(x^3+x\right).12+144\)
\(\Leftrightarrow\left(x^2+8x+16\right)\left(x^3+9\right)=x^6+2x^4+x^2+24x^3+24x+144\)
\(\Leftrightarrow\hept{\begin{cases}x^6+2x^4+24x^3+x^2+24x+144\ge0\\x^6+9x^2+8x^4+72x+16x^3+144=x^6+2x^4+24x^3+x^2+24x+144\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^6+2x^4+24x^3+x^2+24x+144\ge0\\6x^4-8x^3+8x^2+48x=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^6+2x^4+24x^3+x^2+24x+144\ge0\\x\left(6x^3-8x^2+8x+48\right)=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^6+2x^4+24x^3+x^2+24x+144\ge0\\x=0\left(nhan\right);6x^3-8x^2+8x+48=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^6+2x^4+24x^3+x^2+24x+144\ge0\\x=0\left(nhan\right);x=-2\left(nhan\right)\end{cases}}\)
Vậy x =0 hoặc x = -2
\(A=2x^3+6x^2-3x+\dfrac{1}{2}=2\cdot\dfrac{1}{3}^3+6\cdot\dfrac{1}{3}^2-3\cdot\dfrac{1}{3}+\dfrac{1}{2}\)
=13/54
\(Sửa:\left(2x^4-7x^3-7x^2-6x-2\right):\left(2x^2+x-1\right)\\ =\left(2x^4+x^3-x^2-8x^3-4x^2+4x-2x^2-x+1-9x-3\right):\left(2x^2+x-1\right)\\ =\left[x^2\left(2x^2+x-1\right)-4x\left(2x^2+x-1\right)-\left(2x^2+x-1\right)-9x-3\right]:\left(2x^2+x-1\right)\\ =x^2-4x-1\left(\text{dư }-9x-3\right)\)
ĐK \(-1\le x\le7\)
Ta có \(VT=x^2-6x+13=\left(x-3\right)^2+4\ge4\)(1)
\(2VP=\sqrt{4\left(7-x\right)}+\sqrt{4\left(x+1\right)}\le\frac{4+7-x+4+1+x}{2}=8\)
=> \(VP\le4\)(2)
Từ (1);(2)
=> đẳng thức xảy ra khi x=3(tm ĐKXĐ)
Vậy x=3
a) (x + 3)² - (x - 2)(x + 2) = 1
x² + 6x + 9 - x² + 4 - 1 = 0
6x + 12 = 0
6x = 0 - 12
6x = -12
x = -12/6
x = -2
b) M = x² - 6x
= x² - 6x + 9 - 9
= (x - 3)² - 9
Do (x - 3)² ≥ 0 với mọi x ∈ R
⇒ (x - 3)² - 9 ≥ -9
Vậy giá trị nhỏ nhất của M là -9 khi x = 3
\(P=\dfrac{2x+2+x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\)
\(=\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\)
ĐKXĐ: x^2-6x+12>=0
=>x^2-6x+9+3>=0
=>(x-3)^2+3>=0(luôn đúng)