K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

\(VP=\frac{a}{x-1}+\frac{b}{x+1}+\frac{cx+d}{x^2+1}=\frac{a\left(x+1\right)+b\left(x-1\right)}{x^2-1}+\frac{cx+d}{x^2+1}\)

\(=\frac{ax+bx+a-b}{x^2-1}+\frac{cx+d}{x^2+1}=\frac{\left(ax+bx+a-b\right)\left(x^2+1\right)+\left(cx+d\right)\left(x^2-1\right)}{x^4-1}\)

\(=\frac{\left(a+b+c\right)x^3+\left(a-b+d\right)x^2+\left(a+b-c\right)x+\left(a-b-d\right)}{x^4-1}\)

Suy ra   \(\frac{6x^3-5x^2+3}{x^4-1}=\frac{\left(a+b+c\right)x^3+\left(a-b+d\right)x^2+\left(a+b-c\right)x+\left(a-b-d\right)}{x^4-1}\)

\(\Rightarrow\)  \(\left(a+b+c\right)x^3+\left(a-b+d\right)x^2+\left(a+b-c\right)x+\left(a-b-d\right)=6x^3-5x^2+3\)

Đồng nhất hệ số ta được  \(\hept{\begin{cases}a+b+c=6\\a-b+d=-5\end{cases}}\)  và  \(\hept{\begin{cases}a+b-c=0\\a-b-d=3\end{cases}}\)

Giải ra ta được a = 1; b = 2; c = 3; d = -4

23 tháng 6 2017

quy đồng lên rồi đồng nhất hệ số thôi bn

a) Ta có: 3x(x-1)=(x-1)(x+2)

⇔3x(x-1)-(x-1)(x+2)=0

⇔(x-1)(3x-x-2)=0

⇔(x-1)(2x-1)=0

⇔2(x-1)2=0

mà 2≠0

nên (x-1)2=0

⇔x-1=0

hay x=1

Vậy: x=1

b) Ta có: \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)

\(\Leftrightarrow\frac{21\left(4x+3\right)}{105}-\frac{15\left(6x-2\right)}{105}-\frac{35\left(5x+4\right)}{105}-\frac{315}{105}=0\)

\(\Leftrightarrow84x+63-90x+30-175x-140-315=0\)

\(\Leftrightarrow-181x-362=0\)

\(\Leftrightarrow-181x=362\)

hay x=-2

Vậy: x=-2

c) Ta có: \(\frac{1}{2}\left(x+1\right)+\frac{1}{4}\left(x+3\right)=3-\frac{1}{2}\left(x+2\right)\)

\(\Leftrightarrow\frac{x}{2}+\frac{1}{2}+\frac{x}{4}+\frac{3}{4}=3-\frac{x}{2}-1\)

\(\Leftrightarrow\frac{x}{2}+\frac{x}{4}+\frac{5}{4}-\frac{-x}{2}-2=0\)

\(\Leftrightarrow\frac{x}{2}+\frac{x}{4}+\frac{x}{2}-\frac{3}{4}=0\)

\(\Leftrightarrow\frac{x}{4}+x-\frac{3}{4}=0\)

\(\Leftrightarrow\frac{x}{4}+\frac{4x}{4}-\frac{3}{4}=0\)

\(\Leftrightarrow5x-3=0\)

\(\Leftrightarrow5x=3\)

hay \(x=\frac{3}{5}\)

Vậy: \(x=\frac{3}{5}\)

d) Ta có: \(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\)

\(\Leftrightarrow\frac{x+2}{98}+1+\frac{x+4}{96}+1=\frac{x+6}{94}+1+\frac{x+8}{92}+1\)

\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{96}-\frac{x+100}{94}-\frac{x+100}{92}=0\)

\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\right)=0\)

\(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\ne0\)

nên x+100=0

hay x=-100

Vậy: x=-100

25 tháng 2 2020

giup minh voi cac bạn

20 tháng 1 2019

a) <=> \(6x^2-5x+3-2x+3x\left(3-2x\right)=0\)

<=> \(6x^2-5x+3-2x+9x-6x^2=0\)

<=> \(2x+3=0\)

<=> \(x=\frac{-3}{2}\)

b) <=> \(10\left(x-4\right)-2\left(3+2x\right)=20x+4\left(1-x\right)\)

<=> \(10x-40-6-4x=20x+4-4x\)

<=> \(6x-46-16x-4=0\)

<=> \(-10x-50=0\)

<=> \(-10\left(x+5\right)=0\)

<=> \(x+5=0\)

<=> \(x=-5\)

c) <=> \(8x+3\left(3x-5\right)=18\left(2x-1\right)-14\)

<=> \(8x+9x-15=36x-18-14\)

<=> \(8x+9x-36x=+15-18-14\)

<=> \(-19x=-14\)

<=> \(x=\frac{14}{19}\)

d) <=>\(2\left(6x+5\right)-10x-3=8x+2\left(2x+1\right)\)

<=> \(12x+10-10x-3=8x+4x+2\)

<=> \(2x-7=12x+2\)

<=> \(2x-12x=7+2\)

<=> \(-10x=9\)

<=> \(x=\frac{-9}{10}\)

e) <=> \(x^2-16-6x+4=\left(x-4\right)^2\)

<=> \(x^2-6x-12-\left(x-4^2\right)=0\)

<=> \(x^2-6x-12-\left(x^2-8x+16\right)=0\)

<=> \(x^2-6x-12-x^2+8x-16=0\)

<=> \(2x-28=0\)

<=> \(2\left(x-14\right)=0\)

<=> x-14=0

<=> x=14

20 tháng 1 2019

Luffy , cậu sai câu c nhé , kia là -17 ạ => x=17/19

28 tháng 2 2020
https://i.imgur.com/V92CPVX.jpg
28 tháng 2 2020
https://i.imgur.com/yXrzVbQ.jpg

a) Ta có: \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)

\(\Leftrightarrow\frac{7x}{8}-5x+45-\frac{20x+1,5}{6}=0\)

\(\Leftrightarrow\frac{21x}{24}-\frac{120x}{24}+\frac{1080}{24}-\frac{4\left(20x+1,5\right)}{24}=0\)

\(\Leftrightarrow-99x+1080-4\left(20x+1,5\right)=0\)

\(\Leftrightarrow-99x+1080-80x-6=0\)

\(\Leftrightarrow1074-179x=0\)

\(\Leftrightarrow179x=1074\)

hay x=6

Vậy: x=6

b) Ta có: \(4\left(0,5-1,5x\right)=-\frac{5x-6}{3}\)

\(\Leftrightarrow2-6x=\frac{6-5x}{3}\)

\(\Leftrightarrow\frac{3\left(2-6x\right)}{3}-\frac{6-5x}{3}=0\)

\(\Leftrightarrow6-18x-6+5x=0\)

\(\Leftrightarrow-13x=0\)

mà -13≠0

nên x=0

Vậy: x=0

c) Ta có: \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)

\(\Leftrightarrow\frac{6\left(x+4\right)}{30}+\frac{30\left(-x+4\right)}{30}-\frac{10x}{30}+\frac{15\left(x-2\right)}{30}=0\)

\(\Leftrightarrow6\left(x+4\right)+30\left(4-x\right)-10x+15\left(x-2\right)=0\)

\(\Leftrightarrow6x+24+120-30x-10x+15x-30=0\)

\(\Leftrightarrow-19x+114=0\)

\(\Leftrightarrow-19x=-114\)

hay x=6

Vậy: x=6

d) Ta có: \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)

\(\Leftrightarrow\frac{21\left(4x+3\right)}{105}-\frac{15\left(6x-2\right)}{105}-\frac{35\left(5x+4\right)}{105}-\frac{315}{105}=0\)

\(\Leftrightarrow84x+63-90x+30-175x-140-315=0\)

\(\Leftrightarrow-181x-362=0\)

\(\Leftrightarrow-181x=362\)

hay x=-2

Vậy: x=-2

e) Ta có: \(\frac{1}{4}\left(x+3\right)=3-\frac{1}{2}\left(x+1\right)-\frac{1}{3}\left(x+2\right)\)

\(\Leftrightarrow\frac{x+3}{4}=3-\frac{x+1}{2}-\frac{x+2}{3}\)

\(\Leftrightarrow\frac{3\left(x+3\right)}{12}-\frac{36}{12}+\frac{6\left(x+1\right)}{12}+\frac{4\left(x+2\right)}{12}=0\)

\(\Leftrightarrow3x+9-36+6x+6+4x+8=0\)

\(\Leftrightarrow13x-13=0\)

\(\Leftrightarrow13x=13\)

hay x=1

Vậy: x=1

28 tháng 11 2016

Bài 2:

a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=6x\)

Ta có: \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+4\right|\ge0;\left|x+5\right|\ge0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|\ge0\)

\(\Rightarrow6x\ge0\)

\(\Rightarrow x\ge0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=x+1+x+2+x+4+x+5=6x\)

\(\Rightarrow4x+12=6x\)

\(\Rightarrow2x=12\)

\(\Rightarrow x=6\)

Vậy x = 6

b) Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}=\frac{2y-6}{6}=\frac{3z-9}{12}=\frac{x-2-2y+6+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)-\left(2-6+9\right)}{8}\)

\(=\frac{14-5}{8}=\frac{9}{8}\)

+) \(\frac{x-2}{2}=\frac{9}{8}\Rightarrow x-2=\frac{9}{4}\Rightarrow x=\frac{17}{4}\)

+) \(\frac{y-3}{3}=\frac{9}{8}\Rightarrow y-3=\frac{27}{8}\Rightarrow y=\frac{51}{8}\)

+) \(\frac{z-3}{4}=\frac{9}{8}\Rightarrow z-3=\frac{9}{2}\Rightarrow z=\frac{15}{2}\)

Vậy ...

c) \(5^x+5^{x+1}+5^{x+2}=3875\)

\(\Rightarrow5^x+5^x.5+5^x.5^2=3875\)

\(\Rightarrow5^x.\left(1+5+5^2\right)=3875\)

\(\Rightarrow5^x.31=3875\)

\(\Rightarrow5^x=125\)

\(\Rightarrow5^x=5^3\)

\(\Rightarrow x=3\)

Vậy x = 3

28 tháng 11 2016

@@ good :D

13 tháng 8 2020

a) \(\frac{1}{x+2}+\frac{2}{x+3}=\frac{6}{x+4}\)

ĐKXĐ \(x\ne-2,-3,-4\)

=> \(\frac{1}{x+2}+\frac{2}{x+3}-\frac{6}{x+4}=0\)

=> \(\frac{3x+7}{\left(x+2\right)\left(x+3\right)}-\frac{6}{x+4}=0\)

=> \(\frac{\left(3x+7\right)\left(x+4\right)-6\left(x+2\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)\left(x+4\right)}=0\)

=> (3x + 7)(x + 4) - 6(x2 + 5x + 6) = 0

=> 3x2 + 19x + 28 - 6x2 - 30x - 36 = 0

=> -3x2 - 11x - 8 = 0

=> -3x2 - 3x - 8x - 8 = 0

=> -3x(x + 1) - 8(x + 1) = 0

=> (x + 1)(-3x - 8) = 0

=> \(\orbr{\begin{cases}x=-1\\x=-\frac{8}{3}\end{cases}}\)

Vậy ...

b) Thiếu dữ liệu cuả đề 

c) \(\frac{6x+22}{x+2}-\frac{2x+7}{x+3}=\frac{x+4}{x^2+5x+6}\)

ĐKXĐ \(x\ne-2;-3\)

=> \(\frac{\left(6x+22\right)\left(x+3\right)-\left(x+2\right)\left(2x+7\right)}{\left(x+2\right)\left(x+3\right)}=\frac{x+4}{\left(x+2\right)\left(x+3\right)}\)

=> \(6x^2+40x+66-x\left(2x+7\right)-2\left(2x+7\right)=x+4\)

=> \(6x^2+40x+66-2x^2-7x-4x-14=x+4\)

=> 4x2 + 29x + 52 = x + 4

=> 4x2 + 29x + 52 - x - 4 = 0

=> 4x2 + 28x + 48 = 0

=> 4(x2 + 7x + 12) = 0

=> x2 + 7x +12 = 0

=> x2 + 3x + 4x + 12 = 0

=> x(x + 3) + 4(x + 3) = 0

=> (x + 3)(x + 4) = 0

=> \(\orbr{\begin{cases}x=-3\\x=-4\end{cases}}\) 

Mà \(x\ne-2,-3\)nên x = -3 loại

Vậy x = -4