cho a;b;c là các số thực duong.CMR:
\(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\frac{a+b+c}{6}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 120 chia hết cho a
300 chia hết cho a
420 chia hết cho a
=> a \(\in\)ƯC(120,300.420)
Ta có:
120 = 23.3.5
300 = 22.3.52
420 = 22.3.5.7
UCLN(120,300,420) = 22.3.5 = 60
UC(120,300,420) = Ư(60) = {1;2;3;4;5;6;10;12;15;20;30;60}
Vì a > 20 nên a = {30;60}
b) 56 chia hết cho a
560 chia hết cho a
5600 chia hết cho a
=>a \(\in\)ƯC(56,560,5600)
Ta có:
56 = 23.7
560 = 24.5.7
5600 = 25.52.7
UCLN(56,560,5600) = 23.7 = 56
UC(56,560,5600) = Ư(56) = {1;2;4;7;8;14;28;56}
Vì a lớn nhất nên a = 56
Nếu chia hết cho 2 và 5, không chia hết cho 9 thì chỉ có 0 thôi, nhưng nếu mà chia hết cho cả 3 thì đề sai r đó
A = 200*
Mà A chia hết cho 2 và 5, các số chia hết cho 2 và 5 thì có chữ số tận cùng là 0
NHƯNG nếu dấu sao là 0 thì có số 2000, mà 2000 ko chia hết cho 3.
Như vậy, đề sai.
Áp đụng bất đẳng thức Cauchy-Schwartz , ta có :
\(\frac{ab}{a+3b+2c}=\frac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\frac{ab}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)
Tương tự , ta có:
\(\frac{bc}{b+3c+2a}=\frac{bc}{\left(a+b\right)+\left(a+c\right)+2c}\le\frac{bc}{9}\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{2c}\right)\)
\(\frac{ac}{c+3a+2b}=\frac{ac}{\left(b+c\right)+\left(b+a\right)+2b}\le\frac{ac}{9}\left(\frac{1}{b+c}+\frac{1}{b+a}+\frac{1}{2a}\right)\)
Cộng vế theo vế ta có :
\(\frac{ac}{c+3a+2b}+\frac{bc}{b+3c+2a}+\frac{ab}{a+3b+2c}\)
\(\le\frac{ab}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)+\frac{bc}{9}\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{2c}\right)+\frac{ac}{9}\left(\frac{1}{b+c}+\frac{1}{b+a}+\frac{1}{2a}\right)\)
\(=\frac{1}{9}\left(\frac{ab}{a+c}+\frac{bc}{a+c}\right)+\frac{1}{9}\left(\frac{ab}{b+c}+\frac{ac}{b+c}\right)+\frac{1}{9}\left(\frac{ac}{a+b}+\frac{bc}{a+b}\right)+\frac{a}{18}+\frac{b}{18}+\frac{c}{18}\)\(=\frac{a+b+c}{6}\)
\(\RightarrowĐPCM\)
Bạn xem câu hỏi số 184919 nha