K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2023

Bài 1:

 1.2 + 2.3 + 3.4 +...+ 50.51

1.2.3       = 1.2.3                    = 1.2.3

2.3.3      = 2.3.(4-1)               = 2.3.4 - 1.2.3

3.4.3     =   3.4.(5-2)              = 3.4.5 - 2.3.4

....................................................................

50.51.3 = 50.51.(52-49)      = 50.51.52 - 49.50.51

Cộng vế với vế ta có:

1.2.3 + 2.3.3 + 3.4.3 +...+ 50.51.3= 50.51.52

3.(1.2 + 2.3 + 3.4+..+50.51) = 50.51.52

1.2 + 2.3 + 3.4 +....+ 50.51 = 50.51.52: 3 = 44200

4 tháng 8 2023

B = 1.3 + 2.4 + 3.5 +...+ 27.29

1.3      = 1.(2+1)   = 1.2 + 1

2.4      = 2.(3+1)   = 2.3 + 2 

...........................................

27.29 = 27.(28+1) = 27.28 + 28

cộng vế với vế ta có: 

B = 1.3 + 2.4+...+27.29 = 1.2 + 2.3 +...+ 27.28 + 1 + 2+...+ 28

Đặt: A = 1.2 + 2.3+..+27.28; C= 1+2+...+28

Thì B = A + C

1.2.3 = 1.2.3

2.3.3 = 2.3.(4-1) = 2.3.4 - 1.2.3

...........................

27.28.3 = 27.28.(29-26) = 27.28.29 - 26.27.28

Cộng vế với vế ta được : 1.2.3 + 2.3.3 +...+ 27.28.3 = 27.28.29 

3.(1.2 + 2.3 +...+ 27.28) = 27.28.29

1.2 + 2.3 + ...+ 27.28 = 27.28.29 : 3 

A = 1.2 + 2.3 +...+ 27.28 = 7308

C = 1 + 2 + ....+ 28 

Dãy số trên là dãy số cách đều với khoảng cách là: 2-1 = 1

Số số hạng của dãy số trên là: (28 - 1): 1 + 1 = 28

Tổng C = ( 28 + 1)\(\times\) 28 : 2 = 406

B = 7308 + 406 = 7714

4 tháng 4 2021

Gọi số sản phẩm dự định là a (sản phẩm ) (a là số tự nhiên khác 0)

Vì theo dự định mỗi ngày sản xuất 50 sản phẩm nên số ngày theo dự định là \(\dfrac{a}{50}\)

Nhưng thực tế , đội đã sản xuất theeo được 30 sản phẩm do mỗi ngày vượt mức 10 sản phẩm (nghĩa là sản xuất 60 sản phẩm) , nên số ngày thực tế là \(\dfrac{a+30}{60}\)

Vì thực tế sớm hơn dự định 2 ngày nên ta có phương trình :

\(\dfrac{a}{50}=\dfrac{a+30}{60}+2\\ \Leftrightarrow6a=5\left(a+30+120\right)\\\Leftrightarrow a=750\left(t.m\right) \)

Vậy số sản phẩm dự định là 750 sản phẩm

4 tháng 4 2021

Bài 3:

Gọi số sản phẩm đội phải sản xuất theo kế hoạch là x( sản phẩm, x\(\in N\)*)

Thời gian đội sản xuất theo kế hoạch là: \(\dfrac{x}{50}\) (ngày)

Số ngày làm thực tế là: \(\dfrac{x+30}{50+10}=\dfrac{x+30}{60}\) (ngày)

Theo bài ra, ta có phương trình:

\(\dfrac{x}{50}-\dfrac{x+30}{60}=2\)

\(\Leftrightarrow\dfrac{60x-50\left(x+30\right)}{50.60}=2\)

\(\Leftrightarrow60x-50x-1500=6000\Leftrightarrow x=750\)(thoả mãn)

Vậy theo kế hoạch đội phải sản xuất 750 sản phẩm

9 tháng 3 2022

a, Xét tứ giác ADHE có ^ADH = ^AEH = ^DAE = 900

=> tứ giác ADHE là hcn 

=> AH = DE (2 đường chéo bằng nhau) 

b, Xét tam giác AHB và tam giác CHA ta có

^AHB = ^CHA = 900

^HAB = ^HCA ( cùng phụ ^HAC ) 

Vậy tam giác AHB~ tam giác CHA (g.g)

\(\dfrac{AH}{CH}=\dfrac{HB}{AH}\Rightarrow AH^2=BH.CH\)

c, Xét tam giác AHD và tam giác ABH có 

^ADH = ^AHB = 900

^A _ chung 

Vậy tam giác AHD ~ tam giác ABH (g.g)

\(\dfrac{AH}{AB}=\dfrac{AD}{AH}\Rightarrow AH^2=AD.AB\)(1) 

tương tự tam giác AEH ~ tam giác AHC (g.g)

\(\dfrac{AE}{AH}=\dfrac{AH}{AC}\Rightarrow AH^2=AE.AC\left(2\right)\)

Từ (1) ; (2) suy ra \(AD.AB=AE.AC\Rightarrow\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Xét tam giác ADE và tam giác ACB 

^A _ chung 

\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\left(cmt\right)\)

Vậy tam giác ADE ~ tam giác ACB (c.g.c)

 

16 tháng 1 2022

a) \(I_1=\int\dfrac{dx}{x^2+2x+3}\)

\(=\int\dfrac{dx}{\left(x+1\right)^2+2}=\int\dfrac{d\left(x+1\right)}{\left(x+1\right)^2+\left(\sqrt{2}\right)^2}\)

\(=\dfrac{1}{\sqrt{2}}arctan\left(\dfrac{x+1}{\sqrt{2}}\right)+C\)

b) \(I_2=\int\dfrac{dx}{4x^2+4x+2}\)

\(=\int\dfrac{dx}{\left(2x+1\right)^2+1}=\dfrac{1}{2}\int\dfrac{d\left(2x+1\right)}{\left(2x+1\right)^2+1^2}\)

\(=\dfrac{1}{2}arctan\left(2x+1\right)+C\)

16 tháng 1 2022

a) \(I_4=\int\dfrac{3x+5}{2x^2+x+10}dx\)

\(=\int\dfrac{\dfrac{3}{4}\left(4x+1\right)+\dfrac{17}{4}}{2x^2+x+10}dx=\dfrac{3}{4}\int\dfrac{\left(4x+1\right)dx}{2x^2+x+10}+\dfrac{17}{4}\int\dfrac{dx}{2x^2+x+10}\)

\(=\dfrac{3}{4}\int\dfrac{d\left(2x^2+x+10\right)}{2x^2+x+10}+\dfrac{17}{8}\int\dfrac{dx}{x^2+\dfrac{x}{2}+5}\)

\(=\dfrac{3}{4}\ln\left(2x^2+x+10\right)+\dfrac{17}{8}\int\dfrac{dx}{\left(x+\dfrac{1}{4}\right)^2+\dfrac{79}{16}}\)

\(=\dfrac{3}{4}\ln\left(2x^2+x+10\right)+\dfrac{17}{8}\int\dfrac{dx}{\left(x+\dfrac{1}{4}\right)^2+\dfrac{79}{16}}\)

\(=\dfrac{3}{4}\ln\left(2x^2+x+10\right)+\dfrac{17}{8}\int\dfrac{d\left(x+\dfrac{1}{4}\right)}{\left(x+\dfrac{1}{4}\right)^2+\left(\dfrac{\sqrt{79}}{4}\right)^2}\)

\(=\dfrac{3}{4}\ln\left(2x^2+x+10\right)+\dfrac{17}{8}.\dfrac{4}{\sqrt{79}}arctan\left(\dfrac{4x+1}{\sqrt{79}}\right)+C\)

\(=\dfrac{3}{4}\ln\left(2x^2+x+10\right)+\dfrac{17}{2\sqrt{79}}arctan\left(\dfrac{4x+1}{\sqrt{79}}\right)+C\)

16 tháng 1 2022

b) \(I_5=\int\dfrac{4x-1}{6x^2+9x+4}dx\)

\(=\int\dfrac{\dfrac{1}{3}\left(12x+9\right)-4}{6x^2+9x+4}dx\)

\(=\dfrac{1}{3}\int\dfrac{\left(12x+9\right)dx}{6x^2+9x+4}-4\int\dfrac{dx}{6x^2+9x+4}\)

\(=\dfrac{1}{3}\int\dfrac{d\left(6x^2+9x+4\right)}{6x^2+9x+4}-4\int\dfrac{dx}{\left(3x+1\right)^2+3}\)

\(=\dfrac{1}{3}\ln\left(6x^2+9x+4\right)-\dfrac{4}{3}\int\dfrac{d\left(3x+1\right)}{\left(3x+1\right)^2+\left(\sqrt{3}\right)^2}\)

\(=\dfrac{1}{3}\ln\left(6x^2+9x+4\right)-\dfrac{4}{3}.\dfrac{1}{\sqrt{3}}arctan\left(\dfrac{3x+1}{\sqrt{3}}\right)+C\)

 

21 tháng 3 2022

\(n_{Fe}=\dfrac{11,2}{56}=0,2\left(mol\right)\\ n_S=\dfrac{3,2}{32}=0,1\left(mol\right)\\ PTHH:Fe+S\underrightarrow{t^o}FeS\left(1\right)\\ LTL:0,2>0,1\Leftrightarrow Fe.dư\)

\(Theo.pt\left(1\right):n_{Fe\left(pư\right)}=n_{FeS}=0,1\left(mol\right)\\ n_{FeS\left(dư\right)}=0,2-0,1=0,1\left(mol\right)\)

\(PTHH:FeS+H_2SO_4\rightarrow FeSO_4+H_2S\uparrow\left(2\right)\\ Fe+2H_2SO_4\rightarrow FeSO_4+SO_2\uparrow+2H_2O\left(3\right)\)

\(Theo.pt\left(2\right):n_{H_2S}=n_{FeS}=0,1\left(mol\right)\\ Theo.pt\left(3\right):n_{SO_2}=n_{Fe}=0,1\left(mol\right)\\ \%V_{H_2S}=\dfrac{0,1}{0,1+0,1}=50\%\\ \%V_{SO_2}=100\%-50\%=50\%\)

\(Theo.pt\left(2\right):n_{H_2SO_4\left(2\right)}=n_{FeS}=0,1\left(mol\right)\\ Theo.pt\left(3\right):n_{H_2SO_4\left(3\right)}=2n_{Fe}=2.0,1=0,3\left(mol\right)\\ C_{MddH_2SO_4}=\dfrac{0,3}{0,2}=1,5M\)

21 tháng 3 2022

Cảm ơn rất nhiều ạ

19 tháng 3 2021

ĐK: \(x\ge0\)

Dễ thấy \(1-\sqrt{2\left(x^2-x+1\right)}\le1-\sqrt{2}< 0\)

Khi đó bất phương trình tương đương:

\(x-\sqrt{x}\le1-\sqrt{2\left(x^2-x+1\right)}\)

\(\Leftrightarrow\sqrt{x}-\dfrac{1}{\sqrt{x}}-1+\sqrt{2\left(x+\dfrac{1}{x}-1\right)}\le0\)

\(\Leftrightarrow\sqrt{x}-\dfrac{1}{\sqrt{x}}-1+\sqrt{2\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)^2+2}\le0\)

\(\Leftrightarrow t-1+\sqrt{2t^2+2}\le0\)

19 tháng 3 2021

Nguyễn Ngọc Hôm trước có câu tương tự mà nhỉ.