K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b, \(x^5+x+1=x^5-x^2+x^2+x+1\\ =x^2\left(x^3-1\right)+\left(x^2+x+1\right)\\ =x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left[x^2\left(x+1\right)+1\right]\\ =\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)

10 tháng 12 2016

\(x^4+4=x^4+4x^2+4-4x^2\)

\(=\left(x^2+2\right)^2-\left(2x\right)^2\)

\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

27 tháng 10 2023

a,

\(A=4(x-2)(x+1)+(2x-4)^2+(x+1)^2\\=[2(x-2)]^2+2\cdot2(x-2)(x+1)+(x+1)^2\\=[2(x-2)+(x+1)]^2\\=(2x-4+x+1)^2\\=(3x-3)^2\)

Thay $x=\dfrac12$ vào $A$, ta được:

\(A=\Bigg(3\cdot\dfrac12-3\Bigg)^2=\Bigg(\dfrac{-3}{2}\Bigg)^2=\dfrac94\)

Vậy $A=\dfrac94$ khi $x=\dfrac12$.

b,

\(B=x^9-x^7-x^6-x^5+x^4+x^3+x^2-1\\=(x^9-1)-(x^7-x^4)-(x^6-x^3)-(x^5-x^2)\\=[(x^3)^3-1]-x^4(x^3-1)-x^3(x^3-1)-x^2(x^3-1)\\=(x^3-1)(x^6+x^3+1)-x^4(x^3-1)-x^3(x^3-1)-x^2(x^3-1)\\=(x^3-1)(x^6+x^3+1-x^4-x^3-x^2)\\=(x^3-1)(x^6-x^4-x^2+1)\)

Thay $x=1$ vào $B$, ta được:

\(B=(1^3-1)(1^6-1^4-1^2+1)=0\)

Vậy $B=0$ khi $x=1$.

$Toru$

AH
Akai Haruma
Giáo viên
7 tháng 7 2021

a. $6x^2-11x=x(6x-11)$
b. $x^7+x^5+1=(x^7-x)+(x^5-x^2)+x+x^2+1$

$=x(x^6-1)+x^2(x^3-1)+(x^2+x+1)$
$=x(x^3-1)(x^3+1)+x^2(x^3-1)+(x^2+x+1)$
$=(x^3-1)(x^4+x+x^2)+(x^2+x+1)$

$=(x-1)(x^2+x+1)(x^4+x^2+x)+(x^2+x+1)$
$=(x^2+x+1)[(x-1)(x^4+x^2+x)+1]$

$=(x^2+x+1)(x^5-x^4+x^3-x+1)$

AH
Akai Haruma
Giáo viên
7 tháng 7 2021

c.

$x^8+x^4+1=(x^4)^2+2.x^4+1-x^4$

$=(x^4+1)^2-(x^2)^2$

$=(x^4+1-x^2)(x^4+1+x^2)$

$=(x^4+1-x^2)(x^4+2x^2+1-x^2)$

$=(x^4-x^2+1)[(x^2+1)^2-x^2]$

$=(x^4-x^2+1)(x^2+1-x)(x^2+1+x)$

d.

$x^3-5x+8-4=x^3-5x+4$

$=x^3-x^2+x^2-x-(4x-4)$

$=x^2(x-1)+x(x-1)-4(x-1)=(x-1)(x^2+x-4)$

e.

$x^5+x^4+1=(x^5-x^2)+(x^4-x)+x^2+x+1$

$=x^2(x^3-1)+x(x^3-1)+x^2+x+1$

$=(x^3-1)(x^2+x)+(x^2+x+1)$
$=(x-1)(x^2+x+1)(x^2+x)+(x^2+x+1)$

$=(x^2+x+1)[(x-1)(x^2+x)+1]$

$=(x^2+x+1)(x^3-x+1)$

 

 

29 tháng 11 2019

18 tháng 12 2017

2x2 - 2y2 + 16x + 32 = 2(x2 - y2 + 8x + 32)  =  2(x2 + 8x + 16 + 16 - y2)

= 2[ (x + 4)2 - y2 + 16 ] 

= 2[ (x - y + 4)(x + y + 4) + 16 ]

21 tháng 3 2018

13 tháng 9 2017

Ta có:

(x+a)(x+2a)(x+3a)(x+4a) + a4

=(x+a)(x+4a)(x+3a)(x+2a) +a4

=(x2+5ax+4a2)(x2+5ax+6a2) + a4

Đặt x2+5ax+5a2=y

=>(x2+5ax+4a2)(x2+5ax+6a2) + a4=(y-a2)(y+a2)+a4

=y2-a4+a4

=y2

=(x2+5ax+5a2)2

k mik nha

17 tháng 7 2017

câu a)      x^5 +x+1=x^5 -x^2 +x^2 +x+1=x^2(x^3-1) +x^2 +x+1=x^2(x-1)(x^2+x+1) +x^2 +x+1=(x^2+x+1)(x^3-x^2 +1)

a: \(A=x^3y-12xy-x^2y\)

\(=xy\cdot x^2-xy\cdot12-xy\cdot x\)

\(=xy\left(x^2-x-12\right)\)

\(=xy\left(x^2-4x+3x-12\right)\)

\(=xy\left[x\left(x-4\right)+3\left(x-4\right)\right]\)

\(=xy\left(x-4\right)\left(x+3\right)\)

c: \(C=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-120\)

=(x+1)(x+4)(x+2)(x+3)-120

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-120\)

\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)+24-120\)

\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)-96\)

\(=\left(x^2+5x+16\right)\left(x^2+5x-6\right)\)

\(=\left(x^2+5x+16\right)\left(x+6\right)\left(x-1\right)\)

d: \(D=x^5-x^4+x^2-1\)

\(=\left(x^5-x^4\right)+\left(x^2-1\right)\)

\(=x^4\left(x-1\right)+\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x^4+x+1\right)\)

s không có câu b ạ