K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBEC có CM/CB=CF/CE

nên FM//BE

=>FM//OE

=>OEFM là hình thang

b: Xét ΔAMF có EO//MF

nên EO/MF=AE/AF=1/2

=>EO=1/2MF

mà MF=1/2BE

nên EO=1/2*1/2*BE=1/4*BE

=>BE=4*EO

=>BO=3OE

3 tháng 8 2023

Bạn ơi phần b là BO=3. OE mà ?

a) Xét ΔBEC có

M là trung điểm của BC(gt)

F là trung điểm của EC(gt)

Do đó: MF là đường trung bình của ΔBEC(Định nghĩa đường trung bình của tam giác)

Suy ra: MF//BE và \(MF=\dfrac{BE}{2}\)(Định lí 2 về đường trung bình của tam giác)

hay MF//OE

Xét tứ giác OEFM có MF//OE(cmt)

nên OEFM là hình thang(Dấu hiệu nhận biết hình thang)

b) Xét ΔAMF có 

E là trung điểm của AF(gt)

EO//MF(cmt)

Do đó: O là trung điểm của AM(Định lí 1 về đường trung bình của tam giác)

Xét ΔAMF có 

O là trung điểm của AM(cmt)

E là trung điểm của AF(gt)

Do đó: OE là đường trung bình của ΔAMF(Định nghĩa đường trung bình của tam giác)

Suy ra: \(OE=\dfrac{MF}{2}\)(Định lí 2 về đường trung bình của tam giác)

\(\Leftrightarrow MF=2OE\)

\(\Leftrightarrow\dfrac{BE}{2}=2\cdot OE\)

hay BE=4OE

\(\Leftrightarrow BO=BE-OE=4OE-OE=3OE\)(đpcm)

17 tháng 10 2020

Kiểm tra lại đề

a: Xét ΔANF có 

M là trung điểm của AN

E là trung điểm của AF

Do đó: ME là đường trung bình của ΔANF

Suy ra: ME//NF

hay MEFN là hình thang

b: Xét ΔBEM có

N là trung điểm của BM

NI//ME

Do đó: I là trung điểm của BE

hay BI=IE

12 tháng 5 2017

A B C M E F N
Kẻ đoạn thẳng MF.
Do AE = EF nên E là trung điểm AF.
Trong tam giác ABC có AM là đường trung tuyến nên M là trung điểm của BC.
Vì vậy: MF là đường trung bình của tam giác BEC.
Suy ra: MF//BE.
Trong tam giác AMF có E là trung điểm của AF, BE//MF nên BE đi qua trung điểm của AM hay N là trung điểm của AM.
Vì vậy \(\overrightarrow{NA}\)\(\overrightarrow{NM}\) là hai véc tơ đối nhau.

14 tháng 1 2016

1/. Xét Tứ giác AEHF, có:

E = 90 (EH vuong góc AB)

F = 90 (HF vuong AC)

A = 90 (ABC vuong tai A)

=> AEHF là hcn

2/. Vì AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM =1/2BC  => AM =MB = MC = 2,5 cm

=> BC = 2,5 x2 = 5cm

Áp dụng định lý Py-ta-go vào tam giác vuông ABC, có:

AB^2 +AC^2 =BC^2

9+AC^2 = 25

=> AC^2 = 25-9 = 16

=> AC =4cm

Diện tích tam giác ABC: 1/2AB.AC = 1/2(.3.4 )= 6cm^2

3/. Gọi K là giao điểm của EF và AM, J là giao điểm của EF và AH

CM: góc AEK = góc ABC

Vì J là giao điểm của 2 đường chéo trong hcn AEHF => ẠJ = JH = Ẹ = JF

=> tam giác EJA cân tại J => AEJ = EAH (1)

Xét tam giác vuông ABH => EAH +ABC = 90

Xét tam giác vuông ABC=> ABC + ACB = 90

=> EAH = ACB  và (1) => ACB = AEJ  (2)

Vì  AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM = BM = MC

=> tam giác ABM cân tại M => EAK = ABC (3)

Xét tam giác EAK: có: AEJ + EAK = ACB + ABC  = 90 ( do 2 và 3)

=> tam giác AEK vuong tại K 

Hay AM vuông EF

4/. Vì A đới xứng với I qua BC => AI vuông góc với BC . Mà AH vuong với BC => A. H , I thẳng hàng . hay H là trung điểm của AI

Xét tam giác AID, có: 

H là trung ddierm của AI, M là trung điểm của AD 

=> HM là đường trung bình của tam giác AID => HM // ID

=> tứ giác BIDC là hình thang

Xét tam giác ABI , có: BH vừa là đường cao vừa là đường trung tuyến => ABI cân tại B => IBH = ABH (BH là đường phân giác) (4)

Xét tứ giác ABCD có: 

M là trung điểm BC

M là trung điểm AD

M = BC giao AD

=> ABCD là hình bình hành và A = 90 => ABCD là hình chữ nhật

=> DCB = ABC (DC // AB và solle trong) (5)

Từ 4 và 5 => BCD = IBC (= ABC) => Hình thang BIDC là hình thang cân

 

 

14 tháng 1 2016

1/. Xét Tứ giác AEHF, có:

E = 90 (EH vuong góc AB)

F = 90 (HF vuong AC)

A = 90 (ABC vuong tai A)

=> AEHF là hcn

2/. Vì AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM =1/2BC  => AM =MB = MC = 2,5 cm

=> BC = 2,5 x2 = 5cm

Áp dụng định lý Py-ta-go vào tam giác vuông ABC, có:

AB^2 +AC^2 =BC^2

9+AC^2 = 25

=> AC^2 = 25-9 = 16

=> AC =4cm

Diện tích tam giác ABC: 1/2AB.AC = 1/2(.3.4 )= 6cm^2

3/.