Tìm các số nguyên x, y, z thỏa mãn x+6=3^y và 8x+3=3^z
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NM
0
NM
0
BA
11
LT
1
DD
Đoàn Đức Hà
Giáo viên
25 tháng 1 2021
Ta có:
\(\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)\left(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}\right)=3+\left(\frac{xz}{y^2}+\frac{y^2}{xz}\right)+\left(\frac{x^2}{yz}+\frac{yz}{x^2}\right)+\left(\frac{z^2}{xy}+\frac{xy}{z^2}\right)\)
\(\ge3+2\sqrt{\frac{xy^2z}{y^2xz}}+2\sqrt{\frac{x^2yz}{yzx^2}}+2\sqrt{\frac{z^2xy}{xyz^2}}=3+2+2+2=9\)
Dấu \(=\)xảy ra khi \(x=y=z\).
Suy ra giả thiết xảy ra khi \(x=y=z\)suy ra \(x=y=z=1\).
Với \(x\le0\)không thỏa mãn.
Với \(x\ge1\)thì dễ thấy ta sẽ có \(z>y\).
\(\hept{\begin{cases}x+6=3^y\\8x+3=3^z\end{cases}}\Rightarrow8\left(x+6\right)-\left(8x+3\right)=45=8.3^y-3^z\)
\(\Leftrightarrow5.3^2=3^y\left(8-3^{z-y}\right)\)
\(\Rightarrow\hept{\begin{cases}y=2\\z-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=2\\z=3\end{cases}}\)
Suy ra \(x=3\).
Vậy ta có nghiệm \(\left(3,2,3\right)\).
Thk you