K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2017

\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\cdot\cdot\cdot\cdot\cdot\frac{2016}{2017}\)

\(=\frac{1.2........2016}{2.3.............2017}\)

\(=\frac{1}{2017}\)

22 tháng 6 2017

a) \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(x-\frac{1}{4}\right).....\left(1-\frac{1}{2016}\right).\left(1-\frac{1}{2017}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{2015}{2016}.\frac{2016}{2017}=\frac{1}{2017}\)

11 tháng 4 2018

Nguyễn Tiến Đạt

a)\(|3x-5|=|x+2|\)

=> Ta có 2 trường hợp

*) TH1: 3x-5=x+2

=>3x-x=2+5

=>2x=7

=>x=7:2\(\Rightarrow x=\frac{7}{2}\)

*)TH2: -3x+5=x+2

\(\Rightarrow5-3x=x+2\)

\(\Rightarrow5-2=x+3x\)

\(\Rightarrow3=4x\)

\(\Rightarrow x=3:4\Rightarrow x=\frac{3}{4}\)

Vậy \(x\in\left\{\frac{7}{2};\frac{3}{4}\right\}\)

a: \(A=\left(\dfrac{1}{x-1}+\dfrac{x}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+x+1}{x+1}\right)\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)

\(=\left(\dfrac{1}{x-1}+\dfrac{x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)

\(=\dfrac{x+1+x}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)

\(=\dfrac{2x+1}{x-1}\cdot\dfrac{x+1}{2x+1}=\dfrac{x+1}{x-1}\)

b: Thay x=1/2 vào A, ta được:

\(A=\dfrac{\dfrac{1}{2}+1}{\dfrac{1}{2}-1}=\dfrac{3}{2}:\dfrac{-1}{2}=-3\)

c: Để A là số nguyên thì \(x-1+2⋮x-1\)

\(\Leftrightarrow x-1\in\left\{1;-1;2;-2\right\}\)

\(\Leftrightarrow x\in\left\{2;0;3\right\}\)

8 tháng 3 2018

Các bn ơi giúp mk với.....

NV
23 tháng 9 2019

\(A=\left(\frac{1+\sqrt{3}}{\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}-\frac{1-\sqrt{3}}{\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}\right).\sqrt{3}\)

\(=\left(\frac{1+\sqrt{3}-1+\sqrt{3}}{-2}\right).\sqrt{3}=-3\)

\(B=\frac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}}\)

Để \(A=\frac{B}{6}\Leftrightarrow B=6A\Rightarrow\frac{\sqrt{x}-1}{\sqrt{x}}=-18\)

\(\Rightarrow\sqrt{x}-1=-18\sqrt{x}\Rightarrow\sqrt{x}=\frac{1}{19}\Rightarrow x=\frac{1}{361}\)

7 tháng 5 2018

Bài 1 : 

Ta có :

\(A=\frac{10^{17}+1}{10^{18}+1}=\frac{\left(10^{17}+1\right).10}{\left(10^{18}+1\right).10}=\frac{10^{18}+10}{10^{19}+10}\)

Mà : \(\frac{10^{18}+10}{10^{19}+10}>\frac{10^{18}+1}{10^{19}+1}\)

Mà \(A=\frac{10^{18}+10}{10^{19}+10}\)nên \(A>B\)

Vậy \(A>B\)

Bài 2 :

Ta có :

\(S=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2013}\)

\(\Rightarrow S=\frac{2014-1}{2014}+\frac{2015-1}{2015}+\frac{2016-1}{2016}+\frac{2013+3}{2013}\)

\(\Rightarrow S=1-\frac{1}{2014}+1-\frac{1}{2015}+1-\frac{1}{2016}+1+\frac{3}{2013}\)

\(\Rightarrow S=4+\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)\)

Vì \(\frac{1}{2013}>\frac{1}{2014}>\frac{1}{2015}>\frac{1}{2016}\)nên  \(\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)>0\)

Nên : \(M>4\)

Vậy \(M>4\)

Bài 3 : 

Ta có :

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.......+\frac{1}{100^2}\)

Suy ra : \(A< \frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+....+\frac{1}{99.101}\)

\(\Rightarrow A< \frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{2.4}+......+\frac{2}{99.101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-......-\frac{1}{101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left[\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{99}\right)-\left(\frac{1}{3}+\frac{1}{4}+......+\frac{1}{101}\right)\right]\)

\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}-\frac{1}{100}-\frac{1}{101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}\right)\)

\(\Rightarrow A< \frac{3}{4}\)

Vậy \(A< \frac{3}{4}\)

Bài 4 :

\(a)A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2015.2017}\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{1}{2015.2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{2015}-\frac{1}{2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\frac{2016}{2017}\)

\(\Rightarrow A=\frac{1008}{2017}\)

Vậy \(A=\frac{1008}{2017}\)

\(b)\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+......+\frac{1}{x\left(x+2\right)}=\frac{1008}{2017}\)

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{x.\left(x+2\right)}=\frac{2016}{2017}\)

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{x+2}=\frac{2016}{2017}\)

\(1-\frac{1}{x+2}=\frac{2016}{2017}\)

\(\Rightarrow\frac{1}{x+2}=1-\frac{2016}{2017}\)

\(\Rightarrow\frac{1}{x+2}=\frac{1}{2017}\)

\(\Rightarrow x+2=2017\)

\(\Rightarrow x=2017-2=2015\)

Vậy \(x=2015\)

2 tháng 8 2019

1) Để ý rằng : \(x\sqrt{x}-1=\sqrt{x^3}-\sqrt{1^3}=\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\)

\(P=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\)

\(P=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(P=\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(P=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(P=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(P=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

2) \(x=28-6\sqrt{3}=\left(3\sqrt{3}-1\right)^2\)

\(\Rightarrow\sqrt{x}=3\sqrt{3}-1\)

Thay vào P ta được :

\(P=\frac{3\sqrt{3}-1}{28-6\sqrt{3}+3\sqrt{3}-1+1}\)

\(P=\frac{3\sqrt{3}-1}{28-3\sqrt{3}}\)

3) \(P=\frac{\sqrt{x}}{x+\sqrt{x}+1}< \frac{1}{3}\)

\(\Leftrightarrow x+\sqrt{x}+1>3\sqrt{x}\)

\(\Leftrightarrow x-2\sqrt{x}+1>0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2>0\)

BĐT cuối luôn đúng \(\forall x>1\)

Ta có đpcm

4) \(P=\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{2}{7}\)

\(\Leftrightarrow2x+2\sqrt{x}+2=7\sqrt{x}\)

\(\Leftrightarrow2x-5\sqrt{x}+2=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\frac{1}{4}\end{matrix}\right.\)

Vậy...

5) \(P=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

\(\Leftrightarrow Px+P\sqrt{x}+P=\sqrt{x}\)

\(\Leftrightarrow x\cdot P+\sqrt{x}\left(P-1\right)+P=0\)

Phương trình trên có nghiệm khi \(\Delta\ge0\)

\(\Leftrightarrow\left(P-1\right)^2-4P^2\ge0\)

\(\Leftrightarrow P^2-2P+1-4P^2\ge0\)

\(\Leftrightarrow-3P^2-2P+1\ge0\)

\(\Leftrightarrow-3\left(P^2+\frac{2}{3}P-\frac{1}{3}\right)\ge0\)

\(\Leftrightarrow P^2+\frac{2}{3}P-\frac{1}{3}\le0\)

\(\Leftrightarrow P^2+2\cdot P\cdot\frac{1}{3}+\frac{1}{9}-\frac{4}{9}\le0\)

\(\Leftrightarrow\left(P+\frac{1}{3}\right)^2\le\left(\frac{2}{3}\right)^2\)

\(\Leftrightarrow P+\frac{1}{3}\le\frac{2}{3}\)

\(\Leftrightarrow P\le\frac{1}{3}\)

Vậy \(maxP=\frac{1}{3}\Leftrightarrow x=1\)??

Đoạn này sai sai ta ?

2 tháng 8 2019

Akai Haruma câu 5 sai sai ha chị ?

23 tháng 9 2016

ta có \(\frac{1+5y}{5x}\)=\(\frac{1+7y}{4x}\)

=>      4x(1+5y)=5x(1+7y)

=>      4x+20xy=5x+35xy

=>      4x-5x    =35xy-20xy

=>      -x          =15xy

=>      -1          =15y

=>      y           =\(\frac{-1}{15}\)

có y roi thi có thể dễ dàng tìm được x=-2