\(\frac{2}{3}+\frac{4}{21}+\frac{6}{91}+\frac{8}{273}+\frac{3}{504}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(1^2+2^2+3^2+....+2012^2\right).\left(91-273:3\right)\)
\(=\left(1^2+2^2+3^2+...+2012^2\right).\left(91-91\right)\)
\(=0\)
b) \(\left(-284\right).172+\left(-284\right).\left(-72\right)=\left(-284\right).\left(172+-72\right)\)
\(=\left(-284\right).100\)
\(=-28400\)
c) \(\frac{1}{5}+\frac{-1}{6}+\frac{1}{7}+\frac{-1}{8}+\frac{1}{9}+\frac{1}{8}+\frac{-1}{7}+\frac{1}{6}+\frac{-1}{5}\)
\(=\left(\frac{1}{5}+\frac{-1}{5}\right)+\left(\frac{1}{6}+\frac{-1}{6}\right)+\left(\frac{1}{7}+\frac{-1}{7}\right)+\left(\frac{1}{8}+\frac{-1}{8}\right)+\frac{1}{9}\)
\(=0+0+0+0+\frac{1}{19}\)
= 0
Gọi tổng dãy số hạng trên là A
A = 1 + \(\frac{1}{2}\)+ 1 + \(\frac{1}{6}\)+ 1 + \(\frac{1}{12}\)+ ... + 1 + \(\frac{1}{90}\)+ 1 + \(\frac{1}{110}\)
Mà từ \(\frac{1}{2}\)đén \(\frac{1}{110}\) có 10 số
A = 1 x 10 + \(\frac{1}{2}\)+( \(\frac{1}{2}\)- \(\frac{1}{3}\)) + ( \(\frac{1}{3}\)-\(\frac{1}{4}\)) + (\(\frac{1}{4}\)-\(\frac{1}{5}\)) + ... + \(\frac{1}{11}\)
A = 10 + \(\frac{1}{2}\)+ \(\frac{1}{2}\)+ \(\frac{1}{11}\)= \(\frac{112}{11}\)
a) $\frac{4}{{25}}:\frac{4}{3} = \frac{4}{{25}} \times \frac{3}{4} = \frac{3}{{25}}$
b) $\frac{3}{{14}}:\frac{6}{7} = \frac{3}{{14}} \times \frac{7}{6} = \frac{{3 \times 7}}{{14 \times 6}} = \frac{{3 \times 7}}{{7 \times 2 \times 3 \times 2}} = \frac{1}{4}$
c) $\frac{{12}}{{15}}:2 = \frac{{12}}{{15}} \times \frac{1}{2} = \frac{{12 \times 1}}{{15 \times 2}} = \frac{{6 \times 2 \times 1}}{{15 \times 2}} = \frac{6}{{15}}$
d) $\frac{{21}}{8}:6 = \frac{{21}}{8} \times \frac{1}{6} = \frac{{21 \times 1}}{{8 \times 6}} = \frac{{7 \times 3 \times 1}}{{8 \times 3 \times 2}} = \frac{7}{{16}}$
a: \(=\dfrac{3\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}{4\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}+\dfrac{-\dfrac{1}{4}\cdot\dfrac{-2}{3}-\dfrac{3}{4}:\dfrac{1}{6}}{\dfrac{3}{2}\cdot\left(\dfrac{-2}{3}-\dfrac{3}{4}\cdot\dfrac{-2}{3}\right)}\)
\(=\dfrac{3}{4}+\dfrac{\dfrac{2}{12}-\dfrac{9}{2}}{\dfrac{3}{2}\cdot\dfrac{-1}{6}}=\dfrac{3}{4}+\dfrac{-13}{3}:\dfrac{-3}{12}\)
\(=\dfrac{3}{4}+\dfrac{13}{3}\cdot\dfrac{12}{3}=\dfrac{3}{4}+\dfrac{156}{9}=\dfrac{217}{12}\)
b: \(A=158\left(\dfrac{12\left(1-\dfrac{1}{7}-\dfrac{1}{289}-\dfrac{1}{85}\right)}{4\left(1-\dfrac{1}{7}-\dfrac{1}{289}-\dfrac{1}{85}\right)}:\dfrac{5\left(1+\dfrac{1}{13}+\dfrac{1}{169}+\dfrac{1}{91}\right)}{6\left(1+\dfrac{1}{13}+\dfrac{1}{169}+\dfrac{1}{91}\right)}\right)\cdot\dfrac{50550505}{711711711}\)
\(=158\cdot\left(3\cdot\dfrac{6}{5}\right)\cdot\dfrac{50550505}{711711711}\)
\(\simeq40.39\)
Ta có:
\(\frac{2}{3}+\frac{4}{21}+\frac{6}{91}+\frac{8}{273}+\frac{3}{504}\)
\(=\frac{2}{1.3}+\frac{4}{3.7}+\frac{6}{7.13}+\frac{8}{13.21}+\frac{3}{21.24}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-....+\frac{1}{21}-\frac{1}{24}\)
\(=1-\frac{1}{24}=\frac{23}{24}\)
Vậy giá trị biểu thức là \(\frac{23}{24}\)