Chứng minh rằng với mọi số nguyên \(x\) thì biểu thức \(P\) là một số chính phương. \(P=\left(x+5\right)\left(x+7\right)\left(x+9\right)\left(x+11\right)+16\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)
\(=\left(x+y\right)\left(x+4y\right)\left(x+2y\right)\left(x+3y\right)+y^4\)
\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)
\(=\left(x^2+5xy+5y^2-y^2\right)\left(x^2+5xy+5y^2+y^2\right)+y^4\)
\(=\left(x^2+5xy+5y^2\right)^2\) là số chính phương. \(\Rightarrowđpcm\)
Ta có:
\(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)
\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)
Đặt \(x^2+5xy+5y^2=t\left(t\in Z\right)\) thì:
\(A=\left(t-y^2\right)\left(t+y^2\right)+y^4\)
\(=t^2-y^4+y^4=t^2\)
\(=\left(x^2+5xy+5y^2\right)^2\)
Vì \(x,y,z\in Z\) nên:
\(x^2\in Z,5xy\in Z,5y^2\in Z\)
\(\Leftrightarrow x^2+5xy+5y^2\in Z\)
Vậy \(A\) là số chính phương (Đpcm)
ồ bài này khá dễ
Ta có
\(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)
\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)
Đặt \(x^2+5xy+5y^2=t\left(t\in Z\right)\)
\(\)\(A=\left(t-y^2\right)\left(t+y^2\right)+y^4=t^2-y^4+y^4\)
\(=t^2=\left(x^2+5xy+5y^2\right)^2\)
Vì \(x,y,z\in Z\) nên \(\hept{\begin{cases}x^2\in Z\\5xy\in Z\\5y^2\in Z\end{cases}\Rightarrow x^2+5xy+y^2\in Z}\)
Vậy A là số chính phương
\(A=\left[\left(x+y\right)\left(x+4y\right)\right]\left[\left(x+2y\right)\left(x+3y\right)\right]+y^4.\)
\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4.\)
\(=\left[\left(x^2+5xy+5y^2\right)-y^2\right]\left[\left(x^2+5xy+5y^2\right)+y^2\right]+y^4.\)
\(=\left(x^2+5xy+5y^2\right)^2-y^4+y^4\)
\(=\left(x^2+5xy+5y^2\right)^2\)
Đến đây ta có điều phải chứng minh rồi :>
\(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)\)\(\)
\(=1+y^2+x^2+x^2y^2+4xy+2\left(x+y\right)\left(1+xy\right)\)
\(=x^2+2xy+y^2+x^2y^2+2xy+1+2\left(x+y\right)\left(1+xy\right)\)
\(=\left(x+y\right)^2+\left(xy+1\right)^2+2\left(x+y\right)\left(xy+1\right)\)
\(=\left(x+y+xy+1\right)^2\)
Theo tính chất của cấp số cộng, ta có \(u_1+u_4=u_2+u_3\)
Do đó : \(\Leftrightarrow\left(x-u_1\right)\left(x-u_2\right)\left(x-u_3\right)\left(x-u_4\right)=\left[x^2-\left(u_1-u_4\right)x+u_1u_4\right]\left[x^2-\left(u_2-u_3\right)x+u_2u_3\right]\)(*)
Đặt \(t=x^2-\left(u_1+u_4\right)x=x^2-\left(u_2+u_3\right)x\)
Khi đó (*) \(\Leftrightarrow f\left(t\right)=\left(t+u_1u_4\right)\left(t+u_2u_3\right)+9=t^2+\left(u_1u_4+u_2u_3\right)t+u_1u_4u_2u_3+9\)
Với \(\Delta_t=\left(u_1u_4+u_2u_3\right)^2-4u_1u_4u_2u_3-36=\left(u_1u_4+u_2u_3\right)^2-36\)
Rõ ràng \(\left|u_1u_4-u_2u_3\right|\le6\Rightarrow\Delta_t<0\leftrightarrow f\left(t\right)>0\)với mọi t
<=> A có nghĩa với mọi x
Câu 8 :
\(N=\left(\frac{x-1}{\left(x-1\right)^2+x}-\frac{2}{x-2}\right):\left(\frac{\left(x-1\right)^4+2}{\left(x-1\right)^3-1}-x+1\right)\)
Đặt \(x-1=a\)
\(N=\left(\frac{a}{a^2+x}-\frac{2}{a-1}\right):\left(\frac{a^4+2}{a^3-1}-a\right)\)
\(N=\frac{a\left(a-1\right)-2\left(a^2+x\right)}{\left(a^2+x\right)\left(a-1\right)}:\frac{a^4+2-a\left(a^3-1\right)}{a^3-1}\)
\(N=\frac{a^2-a-2a^2-2x}{\left(a^2+x\right)\left(a-1\right)}:\frac{a^4+2-a^4+a}{a^3-1}\)
\(N=\frac{-a^2-a-2x}{\left(a^2+x\right)\left(a-1\right)}\cdot\frac{\left(a-1\right)\left(a^2+a+1\right)}{2+a}\)
\(N=\frac{-\left(a^2+a+2x\right)\left(a^2+a+1\right)}{\left(a^2+x\right)\left(2+a\right)}\)
\(N=\frac{-\left[\left(x-1\right)^2+x-1+2x\right]\left[\left(x-1\right)^2+x-1+1\right]}{\left[\left(x-1\right)^2+x\right]\left(2+x-1\right)}\)
\(N=\frac{-\left(x^2+x\right)\left(x^2-x+1\right)}{\left(x^2-x+1\right)\left(x+1\right)}\)
\(N=\frac{-x\left(x+1\right)}{x+1}\)
\(N=-x\)( đpcm )
Câu 9 : Tìm giá trị nhỏ nhất của biểu thức :
\(P=\frac{x^2}{x+4}\cdot\left(\frac{x^2+16}{x}+8\right)+9\)
Bài làm :
\(P=\frac{x^2}{x+4}\cdot\frac{x^2+8x+16}{x}+9\)
\(P=\frac{x^2\left(x+4\right)^2}{x\left(x+4\right)}+9\)
\(P=x\left(x+4\right)+9\)
\(P=x^2+4x+9\)
\(P=\left(x+2\right)^2+5\ge5\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=-2\)
\(P=x\left(x+a\right)\left(x-a\right)\left(x+2a\right)+a^4\)
\(=\left(x^2+ax\right)\left(x^2+ax-2a^2\right)+a^4\)
Đặt \(x^2+ax=t\)
Khi đó: \(P=t\left(t-2a^2\right)+a^4\)
\(=t^2-2ta^2+\left(a^2\right)^2=\left(t-a^2\right)^2=\left(x^2+ax-a^2\right)^2\)
Chúc bạn học tốt.
\(p=\left[\left(x+5\right).\left(x+11\right)\right].\left[\left(x+7\right).\left(x+9\right)\right]+16=\)
\(=\left(x^2+16x+55\right)\left(x^2+16x+63\right)+16=\)
\(=\left(x^2+16x\right)^2+118.\left(x^2+16x\right)+3481=\)
\(=\left(x^2+16x\right)^2+2.\left(x^2+16x\right).59+59^2=\)
\(=\left[\left(x^2+16x\right)+59\right]^2\) là một số chính phương