K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2023

\(S=5+5^2+5^3+5^4+...+5^{2022}\)

\(S=\left(5+5^2\right)+\left(5^3+5^4\right)+\left(5^5+5^6\right)+...+\left(5^{2021}+5^{2022}\right)\)

\(S=\left(5+5^2\right)+5^2\cdot\left(5+5^2\right)+5^4\cdot\left(5+5^2\right)+...+5^{2020}\cdot\left(5+5^2\right)\)

\(S=\left(5+5^2\right)\left(1+5^2+5^4+...+5^{2020}\right)\)

\(S=30\left(1+5^2+5^4+...+5^{2020}\right)\)

Vậy S chia hết cho 30

2 tháng 8 2023

S không thể chia hết cho 13 nhé

21 tháng 10 2023

Bài 3:

\(A=5+5^2+..+5^{12}\)

\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)

\(5A=5^2+5^3+...+5^{13}\)

\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)

\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)

\(4A=5^{13}-5\)

\(A=\dfrac{5^{13}-5}{4}\)

6 tháng 12 2023

  S= 5+52+53+...+52020+52021

 5S=52+53+54+...+52021+52022

 5S - S=4S=52022-5

  Ta có: 4S+5=52022

             =4S -5 +5 =52022

              => 4S=52022

29 tháng 10 2017

1/5 S = 1+5+5^2+...+5^2012

         =1(1+5+5^2)+5^3(1+5+5^2)+...+5^2010(1+5+5^2)

        mà 1+5+5^2=31=>1+5+5^2 chia hết 31

        => mổi số hạng của 1/5 S chia hết 31

       => S chia hết 31

Học chuyên đó ak. bài zễ thế nài mà ko bt làm ntn hả

18 tháng 11 2017

ta có : S=5+5^2+5^3+5^4+......+5^2013  ( có 2013 số hạng )

           S=(5+5^2+5^3)+(5^4+5^5+5^6)+.............+(5^2011+5^2012+5^2013)   ( có 671 nhóm)

           S= 5.(1+5+5^2)+5^2.(1+5+5^2)+........+5^2011.(1+5+5^2)

           S=(5+5^2+.....+5^2011).31

            S chia hết cho 31                

24 tháng 12 2023

Mũ chứ không phải ngũ bạn ơi.

24 tháng 12 2023

S= 5 + 52+53+...+52021

5S=52+53+54+...+52022

5S-S=52+53+...+52022-5-52-53-...-52021

4S=(52-52)+(53-53)+...+(52021-52021)+(52022-5)

4S=52022-5

=>4S+5=52022-5+5

=>4S+5=52022

     Vậy 4S+5=52022

24 tháng 2 2023

S  = 3+ 32 + 33 + 34 +.....+ 32022

Xét dãy số : 1; 2; 3; 4; .....;2022

Dãy số trên có số số hạng : ( 2022 -1) : 1 + 1 = 2022 ( số hạng)

mà 2022 ⋮ 3

Vậy nhóm ba số hạng liên tiếp của tổng S thành một nhóm ta được:

S =(3 + 32+ 33)+ ( 34 + 35 + 36)+....+( 32020+32021+32022)

S = 3.( 1 + 3 + 32)+ 34.( 1+3+32)+....+32020.(1+3+32)

S = 3.13 + 34.13+ ......+32020.13

S = 13.( 3 + 34+....+32020)

13⋮ 13 ⇒ 13. ( 3+34+....+32020) ⋮ 13

 ⇒ S = 3+32+33+34+...+32022⋮13 (đpcm)

9 tháng 9 2018

a) \(S=5+5^2+5^3+5^4+...+5^{99}\)

\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)

\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)

\(=5.31+5^4.31+...+5^{97}.31\)

\(=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)

b) \(S=5+5^2+5^3+5^4+...+5^{99}\)

\(=5+\left(5^2+5^3\right)+\left(5^4+5^5\right)+...+\left(5^{98}+5^{99}\right)\)

\(=5+5\left(5+5^2\right)+5^3\left(5+5^2\right)+...+5^{97}\left(5+5^2\right)\)

\(=5+5.30+5^3.30+...+5^{97}.30\)

\(=5+30.\left(5+5^3+...+5^{97}\right)\)

\(5⋮̸30\) nên \(S⋮̸30\left(đpcm\right)\)

c) Ta có: \(5S=5^2+5^3+5^4+5^5+...+5^{100}\)

\(5S-S=\left(5^2+5^3+5^4+5^5+...+5^{100}\right)-\left(5+5^2+5^3+5^4+...+5^{99}\right)\)

\(4S=5^{100}-5\)

\(\Rightarrow25^x-5=5^{100}-5\)

\(\Rightarrow25^x=5^{100}\)

\(\Rightarrow25^x=25^{50}\)

\(\Rightarrow x=50\)