chứng tỏ rằng mọi số tự nhiên a và b thì các tính sau luôn luôn chia hết cho 2
a) tích a(a+5)
b) tích (a+3) x (3a+4)
c) tích ab (a+b)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Đặt A=a(a+5)
TH1: a=2k
=>A=2k(2k+5) chia hết cho 2
TH2: a=2k+1
A=(2k+1)(2k+1+5)
=2(k+3)(2k+1) chia hết cho 2
=>A luôn chia hết cho 2
b: Đặt B=(a+3)(3a+4)
TH1: a=2k+1
B=(2k+1+3)[3(2k+1)+4]
=(2k+4)(6k+7)
=2(k+2)(6k+7) chia hết cho 2
TH2: a=2k
B=(2k+3)(3*2k+4)
=2(3k+2)(2k+3) chia hết cho 2
=>B chia hết cho 2
c: nếu a và b có cùng tính lẻ hoặc chẵn thì chắc chắn a+b sẽ chia hết cho 2
=>ab(a+b) chia hết cho2
Nếu a và b có một số chẵn, một số lẽ thì đương nhiên a*b sẽ chia hết cho 2
=>ab(a+b) chia hết cho 2
Do đó: ab(a+b) chia hết cho 2 với mọi số tự nhiên a,b
Bài giải
a, TH1 : Với a lẻ ta có : a + 3 = lẻ + lẻ = chẵn
a + 6 = lẻ + chẵn = lẻ
=> ( a + 3 ) ( a + 6 ) = chẵn x lẻ = chẵn \(⋮\) 2
TH2 : Với a chẵn ta có : a + 3 = chẵn + lẻ = lẻ
a + 6 = chẵn + chẵn = chẵn \(⋮\) 2
b, TH1 : Với a lẻ ta có : a + 5 = lẻ + lẻ =chẵn
=> a ( a + 5 ) = lẻ x chẵn = chẵn \(⋮\) 2
TH2 : Với a chẵn ta có : a + 5 = chẵn + lẻ = lẻ
=> a ( a + 5 ) = chẵn x lẻ = chẵn \(⋮\) 2
c, TH1 : a,b cùng chẵn
=> ab ( a + b ) = chẵn x chẵn x ( chẵn + chẵn ) = chẵn \(⋮\) 2
TH2 : a,b cùng lẻ
=> ab ( a + b ) = lẻ x ( lẻ + lẻ ) = chẵn \(⋮\) 2
TH3 : a,b một thừa số chẵn, một thừa số lẻ
=> ab ( a + b ) = chẵn ( lẻ + chẵn ) = chẵn x lẻ = chẵn \(⋮\) 2
b: \(a^2-a=a\left(a-1\right)\)
Vì a;a-1 là hai số nguyên liên tiếp
nên sẽ có ít nhất 1 số chẵn
=>Tích này chia hết cho 2
a) Vì tổng tận cùng là 0 nên chia hết cho 2;5
b) Vì ba số tự nhiên liên tiếp luôn luôn có số chẵn ba số tự nhiên liên tiếp luôn luôn có 1 số chia hết cho 3
nên chia hết cho 2 ;3
Tích đúng nha
a/Gọi 3 số tn liên tiếp là a , a+1 , a+2
Ta có A=a.(a+1).(a+2)
Chứng minh A chia hết cho 2: Chỉ có hai trường hợp
+Nếu a=2k =>A chia hết cho 2
+Nếu a=2k+1 =>a+1=2k+1+1= 2(k+1) =>A chia hết cho 2
Chứng minh A chia hêt cho 3: Chỉ có ba trường hợp
+Nếu a=3k =>A chia hết cho 3
+Nếu a=3k+1 =>a+2=3k+1+2=3k+3=3(k+1) =>A chia hết cho 3
+Nếu a=3k+2 =>a+1=3k+2+1=3k+3=3(k+1) =>A chia hết cho 3
vì A chia hết cho cả 2 và 3
mà ƯCLN(2,3)=1
vậy A chia hết cho 6
bài b bạn làm tương tự
1./ Gọi tích của 3 số tự nhiên liên tiếp là: A = n*(n+1)(n-1)
Trong 3 số tự nhiên liên tiếp thì:
A chia hết cho cả 2 và 3 mà U(2;3) = 1 => A chia hết cho 2x3 = 6. đpcm
2./ Tương tự, gọi tích B = a*(a + 1)*(2a + 1)
Như vậy, bất kỳ số tự nhiên a nào thì B cũng chia hết cho cả 2 và 3 => b chia hết cho 6.
a: Đặt A=a(a+5)
TH1: a=2k
=>A=2k(2k+5) chia hết cho 2
TH2: a=2k+1
A=(2k+1)(2k+1+5)
=2(k+3)(2k+1) chia hết cho 2
=>A luôn chia hết cho 2
b: Đặt B=(a+3)(3a+4)
TH1: a=2k+1
B=(2k+1+3)[3(2k+1)+4]
=(2k+4)(6k+7)
=2(k+2)(6k+7) chia hết cho 2
TH2: a=2k
B=(2k+3)(3*2k+4)
=2(3k+2)(2k+3) chia hết cho 2
=>B chia hết cho 2
c: nếu a và b có cùng tính lẻ hoặc chẵn thì chắc chắn a+b sẽ chia hết cho 2
=>ab(a+b) chia hết cho2
Nếu a và b có một số chẵn, một số lẽ thì đương nhiên a*b sẽ chia hết cho 2
=>ab(a+b) chia hết cho 2
Do đó: ab(a+b) chia hết cho 2 với mọi số tự nhiên a,b
hi