(313.99-15.314)317:32
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C=(1+3+3^2)+3^3(1+3+3^2)+...+3^15(1+3+3^2)
=13(1+3^3+...+3^15) chia hết cho 13
a) \(-317+402-583+98\)
\(=85-583+98\)
\(=-498+98\)
\(=-400\)
a) 43+(9-21)=317-(x+317)
->43+(-12)=317-(x+317)
-> 31 =317-(x+317)
-> 317-(x+317)=31
-> x+317 =317-31=286
-> x = 286 - 317
-> x = -31
Ung ho minh nha
a)có người làm rồi
b)(15-x)+(x-12)=7-(-5+x)
=>15-x+x-12=7-(-5)-x
=>(-x+x)+15-12=12-x
=>3=12-x
=>-9=-x
=>x=9
c)đề sai x0 là sao
d)|x|+|y|=1
- \(\hept{\begin{cases}-1< y\le0\\y=-1-x\end{cases}\Rightarrow}\hept{\begin{cases}0\le y< 1\\y=x-1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\pm1\\y=0\end{cases}}\).Vì x đạt GTTĐ
- \(\hept{\begin{cases}-1< x\le0\\y=x+1\end{cases}}\Rightarrow\hept{\begin{cases}0\le x< 1\\y=1-x\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=0\\y=\pm1\end{cases}}\).Vì y đạt GTTĐ
e)(x+1) +(x+3)+(x+5)+...+(x+99)=0
=>(x+x+...+x)+(1+3+...+99)=0
=>50x+2500=0
=>50x=-2500
=>x=-50
a, 43 + ( 9 - 21 ) = 317 - ( x + 317 )
43 + ( -12 ) = 317 - x - 317
43 - 12 = 317 - 317 - x
-x = 31
x = -31
b, (15-x) + (x-12) = 7- (-5 + x)
15-x+x-12 = 7+5-x
15-12 = 12-x
3 = 12-x
x = 12-3
x = 9
c, x - { 57- [42+ (-23 - x)]} = 13- {47+ [25- (32-x)]}
x - [57- (42-23-x)] = 13- [47+ (25-32+x)]
x - [57- (19-x)] = 13- [47+ (x-7)]
x - (57-19+x) = 13- (47+x-7)
x - (38+x) = 13- (40+x)
x-38-x = 13-40-x
x = 13-40+38
x = 11
a,x+(-45)=(-62)+17
<=>x=(-62)+17+45
<=>x=0
b,x+29=\(|-43|\)-+(-43)
<=>x=43-43-29
<=>x=-29
c,43+(9-21)=317-(x+317)
<=>31=317-x-317
<=>31=-x
<=>-31=x
d, (15-x)+(x-12)=7-(-5-x)
<=>15-x+x-12=7+5+x
<=>3=12+x
<=>-9=x
e, x-{57-[42+(-23-x)]}=13-{47+[25-(32-x)]}
<=>x-57+42-23-x=13-47-25+32-x
<=>76=-27-x
<=>103=-x
<=>-103=x
f,\(|x|+|-4|=7\)
<=>\(|x|\)+4=7
<=>\(|x|\)=3
<=>x=3 hoặc x=-3
a) \(43+\left(9-21\right)=317-\left(x+317\right)\\ 43+9-21=317-x-317\\ 52-21=\left(317-317\right)-x\\ 31=-x\\ x=-31\)Vậy x = -31
b) \(\left(15-x\right)+\left(x-12\right)=7-\left(-5+x\right)\\ 15-x+x-12=7+5-x\\ \left(x-x\right)+\left(15-12\right)=12-x\\ 3=12-x\\ x=9\)Vậy x = 9
c) \(x-\left\{57-\left[42+\left(-23-x\right)\right]\right\}=13-\left\{47+\left[25-\left(32-x\right)\right]\right\}\\ x-\left\{57-\left[42+\left(-23\right)-x\right]\right\}=13-\left\{47+\left[25-32+x\right]\right\}\\ x-\left\{57-42+23+x\right\}=13-\left\{47+25-32+x\right\}\\ x-57+42-23-x=13-47-25+32-x\\ -57+42-23=-34-25+32-x\\ -15-23=-59+32-x\\ -38=-27-x\\ x=11\)Vậy x = 11
d) \(-7+\left|x-4\right|=-3\\ \left|x-4\right|=4\\ \Rightarrow\left[{}\begin{matrix}x-4=4\\x-4=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8\\x=0\end{matrix}\right.\)Vậy \(x\in\left\{8;0\right\}\)
e) \(13-\left|x+5\right|=13\\ \left|x+5\right|=0\\ \Rightarrow x+5=0\\ \Rightarrow x=-5\)Vậy x = -5
g) \(\left|x-10\right|-\left(-12\right)=4\\ \left|x-10\right|=-8\\ \Rightarrow x\in\varnothing\left(\text{vì }\left|x-10\right|\ge0\text{với mọi }x\right)\)Vậy \(x\in\varnothing\)
h) \(\left|x+2\right|< 5\\ 0\le\left|x+2\right|< 5\\ \Rightarrow\left|x+2\right|\in\left\{1;2;3;4\right\}\\ \Rightarrow x+2\in\left\{1;-1;2;-2;3;-3;4;-4\right\}\\ \Rightarrow x\in\left\{-1;-3;0;-4;1;-5;2;-6\right\}\)Vậy \(x\in\left\{-1;-3;0;-4;1;-5;2;-6\right\}\)
a) 43+(9−21)=317−(x+317)43+9−21=317−x−31752−21=(317−317)−x31=−xx=−3143+(9−21)=317−(x+317)43+9−21=317−x−31752−21=(317−317)−x31=−xx=−31Vậy x = -31
b) (15−x)+(x−12)=7−(−5+x)15−x+x−12=7+5−x(x−x)+(15−12)=12−x3=12−xx=9(15−x)+(x−12)=7−(−5+x)15−x+x−12=7+5−x(x−x)+(15−12)=12−x3=12−xx=9Vậy x = 9
c) x−{57−[42+(−23−x)]}=13−{47+[25−(32−x)]}x−{57−[42+(−23)−x]}=13−{47+[25−32+x]}x−{57−42+23+x}=13−{47+25−32+x}x−57+42−23−x=13−47−25+32−x−57+42−23=−34−25+32−x−15−23=−59+32−x−38=−27−xx=11x−{57−[42+(−23−x)]}=13−{47+[25−(32−x)]}x−{57−[42+(−23)−x]}=13−{47+[25−32+x]}x−{57−42+23+x}=13−{47+25−32+x}x−57+42−23−x=13−47−25+32−x−57+42−23=−34−25+32−x−15−23=−59+32−x−38=−27−xx=11Vậy x = 11
d) −7+|x−4|=−3|x−4|=4⇒[x−4=4x−4=−4⇒[x=8x=0−7+|x−4|=−3|x−4|=4⇒[x−4=4x−4=−4⇒[x=8x=0Vậy x∈{8;0}x∈{8;0}
e) 13−|x+5|=13|x+5|=0⇒x+5=0⇒x=−513−|x+5|=13|x+5|=0⇒x+5=0⇒x=−5Vậy x = -5
g) |x−10|−(−12)=4|x−10|=−8⇒x∈∅(vì |x−10|≥0với mọi x)|x−10|−(−12)=4|x−10|=−8⇒x∈∅(vì |x−10|≥0với mọi x)Vậy x∈∅x∈∅
h) |x+2|<50≤|x+2|<5⇒|x+2|∈{1;2;3;4}⇒x+2∈{1;−1;2;−2;3;−3;4;−4}⇒x∈{−1;−3;0;−4;1;−5;2;−6}|x+2|<50≤|x+2|<5⇒|x+2|∈{1;2;3;4}⇒x+2∈{1;−1;2;−2;3;−3;4;−4}⇒x∈{−1;−3;0;−4;1;−5;2;−6}Vậy x∈{−1;−3;0;−4;1;−5;2;−6}