K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2023

 Pt đã cho \(\Leftrightarrow\left(\dfrac{10a+b}{a+b}\right)^2=a+b\inℤ\). Ta thấy nếu \(a+b\) không là số chính phương thì khi đó \(\sqrt{a+b}=\dfrac{10a+b}{a+b}\), vô lí vì VT là số vô tỉ trong khi VP là số hữu tỉ (do \(a,b\inℤ\)). Do đó, \(a+b\) phải là số chính phương hay \(\dfrac{10a+b}{a+b}=k\inℤ\) . Suy ra \(a+b=k^2\).

 Từ đó suy ra \(10a+b=k\left(a+b\right)=k^3\). Do đó ta có hệ pt sau:

 \(\left\{{}\begin{matrix}a+b=k^2\\10a+b=k^3\end{matrix}\right.\). Giải hpt, ta thu được họ nghiệm là \(\left(a,b\right)=\left(\dfrac{k^3-k^2}{9},\dfrac{10k^2-k^3}{9}\right)\). Do \(a,b\inℤ\) nên \(\left\{{}\begin{matrix}9|k^3-k^2\\9|10k^2-k^3\end{matrix}\right.\Leftrightarrow9|k^3-k^2\) \(\Leftrightarrow9|k^2\left(k-1\right)\). Hơn nữa \(\left(k^2,k-1\right)=1\) nên suy ra \(\left[{}\begin{matrix}9|k^2\\9|k-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}3|k\\k\equiv1\left[9\right]\end{matrix}\right.\)

 Như vậy, tất cả các cặp số có dạng \(\left(\dfrac{k^3-k^2}{9},\dfrac{10k^2-k^3}{9}\right)\) với \(k⋮3\) hoặc \(k\equiv1\left[9\right]\) đều thỏa mãn pt đã cho.

2 tháng 8 2023

 Ở dòng đầu tiên mình thiếu trường hợp nếu \(a+b=0\) thì \(10a+b=0\) \(\Leftrightarrow a=0\Leftrightarrow b=0\) là nghiệm của pt đã cho, sau đó mình xét \(a+b\ne0\) thì mới chia được 2 vế cho \(a+b\) như trong bài nhé.

11 tháng 9 2021

\(a,f'\left(x\right)=3x^2-6x\\ f'\left(x\right)\le0\Leftrightarrow3x^2-6x\le0\\ \Leftrightarrow3x\left(x-2\right)\le0\Leftrightarrow0\le x\le2\)

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Lời giải:

a. $f'(x)\leq 0$

$\Leftrightarrow 3x^2-6x\leq 0$

$\Leftrightarrow x(x-2)\leq 0$

$\Leftrightarrow 0\leq x\leq 2$

b.

$f'(x)=x^2-3x+2=0$

$\Leftrightarrow 3x^2-6x=x^2-3x+2=0$

$\Leftrightarrow 3x(x-2)=(x-1)(x-2)=0$

$\Leftrightarrow x-2=0$

$\Leftrightarrow x=2$

c.

$g(x)=f(1-2x)+x^2-x+2022$

$g'(x)=(1-2x)'f(1-2x)'_{1-2x}+2x-1$

$=-2[3(1-2x)^2-6(1-2x)]+2x-1$
$=-24x^2+2x+5$

$g'(x)\geq 0$

$\Leftrightarrow -24x^2+2x+5\geq 0$

$\Leftrightarrow (5-12x)(2x-1)\geq 0$

$\Leftrightarrow \frac{-5}{12}\leq x\leq \frac{1}{2}$

1 tháng 6 2023

\(\left|x-2\right|=\left|2x-3\right|\)

Nếu : \(\left\{{}\begin{matrix}2x-3\ge0\Leftrightarrow2x\ge3\Leftrightarrow x\ge\dfrac{3}{2}\\2x-3< 0\Leftrightarrow2x< 3\Leftrightarrow x< \dfrac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=2x-3\\x-2=-\left(2x-3\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-x=-3+2\\x-2=-2x+3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-x=-1\\3x=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(ktm\right)\\x=\dfrac{5}{3}\left(ktm\right)\end{matrix}\right.\)

Vậy pt vô nghiệm

__

\(\left|5-x\right|=\left|x+2\right|\)

Nếu : \(\left\{{}\begin{matrix}x+2\ge0\Leftrightarrow x\ge-2\\x+2< 0\Leftrightarrow x< -2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5-x=x+2\\5-x=-\left(x+2\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=2-5\\5-x=-x-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=-3\\0=-7\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\left(ktm\right)\\0=-7\left(ktm\right)\end{matrix}\right.\)

Vậy pt vô nghiệm

2 tháng 12 2021

Đặt S=x+y, P=x.y
Ta có:S=2a-1, x^2+y^2=S^2-2P=a^2+2a-3
\Rightarrow P=\frac{1}{2}[(2a-1)^2-(a^2+2a-3)]=\frac{1}{2}(3a^2-6a+4)
Trước hết tìm a để hệ có nghiệm.
Điều kiện để hệ có nghiệm:S^2-4P \geq 0 \Leftrightarrow (2a-1)^2-2(3a^2-6a+4)\geq 0
\Leftrightarrow -2a^2+8a-7 \geq 0 \leftrightarrow 2-\frac{\sqrt{2}}{2} \leq a \leq 2+\frac{\sqrt{2}}{2}      (1)
Tìm a để P=\frac{1}{2}(3a^2-6a+4) đạt giá trị nhỏ nhất trên đoạn
        [2-\frac{\sqrt{2}}{2} ;2+\frac{\sqrt{2}}{2}]
Ta có hoành độ đỉnh a_0=\frac{6}{2.3}=1Parabol có bề lõm quay lên do đó \min P=P(2-\frac{\sqrt{2}}{2} )$
Vậy với a=2-\frac{\sqrt{2}}{2}  thì xy đạt giá trị nhỏ nhất.

1 tháng 9 2017

Ta có: 

\(\frac{x}{\left(a-b\right)\left(a-c\right)}+\frac{x}{\left(b-a\right)\left(b-c\right)}+\frac{x}{\left(c-a\right)\left(c-b\right)}=2\)

\(\Leftrightarrow x\left(\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\right)=2\)

\(\Leftrightarrow0x=2\)

Vậy PT vô nghiệm

1 tháng 9 2017

không hổ danh là anh ali ( bài này tui bó tay T_T )