Cho x - 5y chia hết cho 17 ( Với x,y thuộc Z )
Chứng minh rằng : 10x + y chia hết cho 17
Giúp mình với, PLEASE !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x - 5y chia hết cho 17
<=> 10.(x - 5y) chia hết cho 17
=> 10x - 50y chia hết cho 17
Vì (10x - 50y) - (10x + y) = -51y
Mà -51y chia hết cho 17
Nên 10x + y chia hết cho 17
Đặt A = 2x + 3y; B = 9x + 5y
Xét biểu thức: 9A - 2B = 9.(2x + 3y) - 2.(9x + 5y)
= (18x + 27y) - (18x + 10y)
= 18x + 27y - 18x - 10y
= 17y
+ Nếu A chia hết cho 17 thì 9A chia hết cho 17; 17y chia hết cho 17
=> 2B chia hết cho 17
Mà (2;17)=1 => B chia hết cho 17
+ Nếu B chia hết cho 17 thì 2B chia hết cho 17; 17y chia hết cho 17 => 9A chia hết cho 17
Mà (9;17)=1 => A chia hết cho 17
Vậy với mọi x,y thuộc Z ta có: 2x + 3y chia hết cho 17 <=> 9x + 5y chia hết cho 17 (đpcm)
Ta có :
3x + y chia hết cho 17
Suy ra ( 3x + 2y)9 = 27x + 18y cũng chia hết cho 17 (1)
Mà: (27x + 18y) - (10x + y) = 17x - 17y chia hết cho 17 (2)
Từ (1) và (2) suy ra điều phải chứng minh.
x-5y chia hết cho 17
=>10x-50y chia hết cho 17
=>10x+y-51y chia hết cho 17
mà 51y chia hết cho 17
nên 10x+y chia hết cho 17
Cảm ơn bạn nha