Tìm GTLN và GTNN của
\(\dfrac{3x^2-2xy+y^2}{9x^2-6xy+2y^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=(9x^2+6xy+y^2)+y^2-6x+4y+17$
$=(3x+y)^2-2(3x+y)+y^2+6y+17$
$=(3x+y)^2-2(3x+y)+1+(y^2+6y+9)+7$
$=(3x+y-1)^2+(y+3)^2+7\geq 0+0+7=7$
Vậy GTNN của biểu thức là $7$. Giá trị này đạt được khi $3x+y-1=y+3=0$
$\Leftrightarrow y=-3; x=\frac{4}{3}$
$A$ không có max bạn nhé.
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
Do \(x^2+y^2=1\Rightarrow\) đặt \(\left\{{}\begin{matrix}x=sina\\y=cosa\end{matrix}\right.\)
\(\Leftrightarrow P=\dfrac{2sin^2a+12sina.cosa}{1+2sina.cosa+2cos^2a}=\dfrac{1-cos2a+6sin2a}{2+sin2a+cos2a}\)
\(\Leftrightarrow P\left(2+sin2a+cos2a\right)=1-cos2a+6sin2a\)
\(\Leftrightarrow\left(P-6\right)sin2a+\left(P+1\right)cos2a=1-2P\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(\left(P-6\right)^2+\left(P+1\right)^2\ge\left(1-2P\right)^2\)
\(\Leftrightarrow P^2+3P-18\le0\Rightarrow-6\le P\le3\)
Vậy \(\left\{{}\begin{matrix}P_{max}=3\\P_{min}=-6\end{matrix}\right.\)
P=2(x^2+6xy)/(1+2xy+2y^2)
=2(x^2+6xy)/(x^2+2xy+3y^2)
*y=0=>P=2
*y#0:
Chia cả tử và mẫu của P cho y^2.
Đặt x/y=a,ta có:
P=2(a^2+6a)/(a^2+2a+3)
<=>(P-2)a^2+2(P-6)a+3P=0
∆'=(P-6)^2-3P(P-2)
=-P^2-3P+18>=0
<=>(P+6)(P-3)=<0
<=>-6=<P=<3
Vậy maxP=3<=>x/y=3 và x^2+y^2=1<=>x=±3/2;y=±1/2
MinP=-6<=>x/y=-3/2 và x^2+y^2=1<=>x=±1/√13;y=-+2/√13