K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2017

Ta có : (x2 - x - 1) chia hết cho (x - 1)

=> x(x - 1) - 1 chia hết cho x - 1

=> 1 chia hết cho x - 1

=> x - 1 thuộc Ư(1) {-1;1}

Ta có bảng : 

x - 1-11
x02
20 tháng 6 2017

Aikatsu Stars

Ta có : ﴾x 2 ‐ x ‐ 1﴿ chia hết cho ﴾x ‐ 1﴿

=> x﴾x ‐ 1﴿ ‐ 1 chia hết cho x ‐ 1

=> 1 chia hết cho x ‐ 1

=> x ‐ 1 thuộc Ư﴾1﴿ {‐1;1}

Ta có bảng : 

x- 1-11
x02

b: \(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)

3 tháng 8 2021

(x-1)2-1+x2-(1-x)(x+3)=0

⇒x2-2x+1-1+x2-x(1-x)+3(1-x)=0

⇒x2-2x+1-1+x2-x+x2+3-3x=0

⇒3x2-6x+3=0

⇒3(x2-2x+1)=0

⇒x2-2x+1=0

⇒(x-1)2=0

⇒x-1=0

⇒x=1

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

Lời giải:

$(x-1)^2-1+x^2-(1-x)(x+3)=0$

$\Leftrightarrow (x^2-2x+1)-1+x^2-(3-x^2-2x)=0$

$\Leftrightarrow x^2-2x+1-1+x^2-3+x^2+2x=0$

$\Leftrightarrow 3x^2-3=0$
$\Leftrightarrow x^2-1=0$

$\Leftrightarrow (x-1)(x+1)=0$

$\Leftrightarrow x=1$ hoặc $x=-1$

b: Ta có: \(\left(x-2\right)^3-x^2\left(x-6\right)=4\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+6x^2=4\)

\(\Leftrightarrow12x=12\)

hay x=2

d: Ta có: \(3\left(x-1\right)^2-3x\left(x-5\right)=1\)

\(\Leftrightarrow3x^2-6x+3-3x^2+15x=1\)

\(\Leftrightarrow9x=-2\)

hay \(x=-\dfrac{2}{9}\)

16 tháng 11 2023

1. a) \(7x^2\left(2x^3+3x^5\right)=7x^2\cdot2x^3+7x^2\cdot3x^5=14x^5+21x^7\)

b) \(\left(x^3-x^2+x-1\right):\left(x-1\right)=\dfrac{x^3-x^2+x-1}{x-1}\)

\(=\dfrac{x^2\left(x-1\right)+\left(x-1\right)}{x-1}=\dfrac{\left(x-1\right)\left(x^2+1\right)}{x-1}=x^2+1\)

16 tháng 11 2023

2: \(x^2-8x+7=0\)

=>\(x^2-x-7x+7=0\)

=>\(x\left(x-1\right)-7\left(x-1\right)=0\)

=>\(\left(x-1\right)\left(x-7\right)=0\)

=>\(\left[{}\begin{matrix}x-1=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=7\end{matrix}\right.\)

1:

a: \(7x^2\left(2x^3+3x^5\right)=7x^2\cdot2x^3+7x^2\cdot3x^5=21x^7+14x^5\)

b: \(\dfrac{x^3-x^2+x-1}{x-1}=\dfrac{x^2\left(x-1\right)+\left(x-1\right)}{\left(x-1\right)}\)

\(=x^2+1\)

19 tháng 9 2021

\(\left(x-1\right)\left(x^2+x+1\right)-x\left(x-3\right)^2=6x^2\\ \Rightarrow x^3-1-x\left(x^2-6x+9\right)-6x^2=0\\ \Rightarrow x^3-1-x^3+6x^2-9x-6x^2=0\\ \Rightarrow-9x-1=0\\ \Rightarrow-9x=1\\ \Rightarrow x=-\dfrac{1}{9}\)

3 tháng 8 2017

a) Tìm được x = -4.        

b) Tìm được x = 3.

c) Tìm được x = ±1.

a) \(\Leftrightarrow x^2-x-x^2+2x=5\)
    \(\Leftrightarrow x=5\)
b) \(\Leftrightarrow4x\left(x^2-9\right)=0\)
    \(\Leftrightarrow4x\left(x-3\right)\left(x+3\right)=0 \)
    \(\Leftrightarrow\)\(\left[{}\begin{matrix}4x=0\\x-3=0\\x+3=0\end{matrix}\right.\)
    \(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
Vậy x = 0 , x = 3 hoặc x = -3

7 tháng 11 2021

\(a,\Leftrightarrow x^2-x-x^2+2x=5\\ \Leftrightarrow x=5\\ b,\Leftrightarrow4x\left(x^2-9\right)=0\\ \Leftrightarrow4x\left(x-3\right)\left(x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ c,\Leftrightarrow2x\left(x-1\right)-\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(2x-x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\\ d,\Leftrightarrow\left(x^2-9x+14\right)\left(x^2-9x+20\right)-72=0\\ \Leftrightarrow\left(x^2-9x+17\right)^2-3^2-72=0\\ \Leftrightarrow\left(x^2-9x+17\right)^2-81=0\\ \Leftrightarrow\left(x^2-9x+17-9\right)\left(x^2-9x+17+9\right)=0\\ \Leftrightarrow\left(x-8\right)\left(x-1\right)\left(x^2-9x+26\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=8\\x=1\\\left(x-\dfrac{9}{2}\right)^2+\dfrac{23}{4}=0\left(vô.n_0\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)

24 tháng 9 2018

a) Rút gọn được VT = 9x + 7. Từ đó tìm được x = 1.

b) Rút gọn được VT = 2x + 8. Từ đó tìm được x = 7 2 .

8 tháng 9 2018

Ta có f(1) = 12 -(m - 1).1 + 3m - 2 = 2m

g(2) = 22 - 2(m + 1).2 - 5m + 1 = -9m + 1

Vì f(1) = g(2) ⇒ 2m = -9m + 1 ⇒ 11m = 1 ⇒ m = 1/11. Chọn D

c: Ta có: \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)

\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\)

\(\Leftrightarrow3x^2+26x=0\)

\(\Leftrightarrow x\left(3x+26\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{26}{3}\end{matrix}\right.\)

23 tháng 9 2021

\(a,\Leftrightarrow x^2+8x+16-x^3-12x^2=16\\ \Leftrightarrow x^3+11x^2-8x=0\\ \Leftrightarrow x\left(x^2+11x-8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+11x-8=0\left(1\right)\end{matrix}\right.\\ \Delta\left(1\right)=121+32=153\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-11-3\sqrt{17}}{2}\\x=\dfrac{-11+3\sqrt{17}}{2}\end{matrix}\right.\\ S=\left\{0;\dfrac{-11-3\sqrt{17}}{2};\dfrac{-11+3\sqrt{17}}{2}\right\}\)

\(c,\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\\ \Leftrightarrow3x^2+26x=0\\ \Leftrightarrow x\left(3x+26\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{26}{3}\end{matrix}\right.\\ d,\Leftrightarrow x^3-6x^2+12x-8-x^3-125-6x^2=11\\ \Leftrightarrow-12x^2+12x-144=0\\ \Leftrightarrow x^2-x+12=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=3\end{matrix}\right.\)