Tìm x biết
3x .32 .3 = 243.3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x^2y^3-x^2y-M=x^2y^3+x^2y\\ \Rightarrow M=3x^2y^3-x^2y-x^2y^3-x^2y\\ \Rightarrow M=2x^2y^3-2x^2y\)
\(\Leftrightarrow M=3x^2y^3-x^2y-x^2y^3-x^2y=2x^2y^3-2x^2y\)
\(3x\left(x+4\right)-3x^2-4=0\\ \Rightarrow3x^2+12x-3x^2-4=0\\ \Rightarrow12x-4=0\\ \Rightarrow12x=4\\ \Rightarrow x=\dfrac{1}{3}\)
Lời giải:
Giả sử pt có nghiệm nguyên $(x,y)$ đi.
$3x^2=2001-28y^2$ lẻ $\Rightarrow x$ lẻ. Đặt $x=2k+1$ với $k$ nguyên
$\Rightarrow 3(2k+1)^2+28y^2=2001$
$\Leftrightarrow 12k^2+12k+28y^2=1998$
Ta thấy vế trái chia hết cho $4$ mà vế phải $1998$ chia $4$ dư $2$
Do đó pt không có nghiệm nguyên.
\(3^x.3^2.3=243.3\\ \Rightarrow3^x.3^2=243\\ \Rightarrow3^x.3^2=3^5\\ \Rightarrow3^x=3^5:3^2\\ \Rightarrow3^x=3^3\\ \Rightarrow x=3\)
=>3^x*3^3=3^5*3
=>x+3=6
=>x=3