a) (- 7) . ( 5 – x) < 0
b) 11 ⁝ x – 1
c) x + 8 ⁝ x + 1
d) (x + 2) . (5 – x) > 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: (x-2)(x+3/4)>0
=>x-2>0 hoặc x+3/4<0
=>x>2 hoặc x<-3/4
b: (2x-5)(1-3x)>0
=>(2x-5)(3x-1)<0
=>3x-1>0 và 2x-5<0
=>1/3<x<5/2
c: (3-2x)(x+1)<0
=>(2x-3)(x+1)>0
=>2x-3>0 hoặc x+1<0
=>x>3/2 hoặc x<-1
d: (5x+11)(7-x)<0
=>(5x+11)(x-7)>0
=>x>7 hoặc x<-11/5
a) \(x\left(x-3\right)>0\)
\(\Leftrightarrow x\) và \(x-3\) cùng dấu
\(TH:\hept{\begin{cases}x>0\\x-3>0\end{cases}}\Rightarrow x>3\)
\(TH:\hept{\begin{cases}x< 0\\x-3< 0\end{cases}}\Leftrightarrow x< 0\)
b) \(x\left(x+2\right)>0\)
\(\Leftrightarrow x\) và \(x+2\) cùng dấu
\(TH:\hept{\begin{cases}x>0\\x+2>0\end{cases}}\Rightarrow x>0\)
\(TH:\hept{\begin{cases}x< 0\\x+2< 0\end{cases}}\Leftrightarrow x< -2\)
c) \(\left(x+5\right)2x>0\)
\(\Leftrightarrow2x^2+10x>0\)
\(\Leftrightarrow x\inℕ^∗\)
d) \(x\left(x+3\right)< 0\)
\(\Leftrightarrow x\) và \(x+3\) trái dấu
Mà x < x + 3 nên \(\hept{\begin{cases}x< 0\\x+3>0\end{cases}}\Rightarrow-3< x< 0\)
Vậy \(x\in\left\{-2;-1\right\}\)
Tìm x biết :a) ( 2x - 3 ).( x +1 ) > 0b) ( x + 5 ).(x-7) < 0c) | 2x - 3 | + 8 = 10d) ( 2x + 5 ) . | x -8 | . ( x2 + 1 ) = 0
a) tính thường
b) \(\left(x-1\right)\left(x+2\right)< 0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1>0\\x+2< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -2\end{cases}}\Leftrightarrow1< x< -2\left(ktm\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x-1< 0\\x+2>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 1\\x>-2\end{cases}}\Leftrightarrow-2< x< 1\left(tm\right)\)
vậy
c)\(\left(x+\frac{3}{5}\right)\left(x+1\right)< 0\Leftrightarrow\orbr{\begin{cases}x+\frac{3}{5}< 0\\x+1>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< -\frac{3}{5}\\x>-1\end{cases}}\Leftrightarrow-1< x< -\frac{3}{5}\left(tm\right)\)
d) \(\left(x-\frac{1}{3}\right)\left(x+\frac{2}{5}\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{3}>0\\x+\frac{2}{5}>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>\frac{1}{3}\\x>-\frac{2}{5}\end{cases}}\Leftrightarrow x>\frac{1}{3}\left(tm\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{3}< 0\\x+\frac{2}{5}< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< \frac{1}{3}\\x< -\frac{2}{5}\end{cases}}\Leftrightarrow x< \frac{-2}{5}\left(tm\right)\)
vậy ...
a) 5/2 - x + 4/5 = 2/3 + 4/7
<=> 33/10 - x = 26/21
<=> x = 433/210
b) ( x - 1 )( x + 2 ) < 0 ( cái " x " kia là nhân à :v )
Xét 2 trường hợp
1.\(\hept{\begin{cases}x-1>0\\x+2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>1\\x< -2\end{cases}}\)( loại )
2. \(\hept{\begin{cases}x-1< 0\\x+2>0\end{cases}}\Rightarrow\hept{\begin{cases}x< 1\\x>-2\end{cases}}\Rightarrow-2< x< 1\)
Vậy -2 < x < 1
c) ( x + 3/5 )( x + 1 ) < 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}x+\frac{3}{5}< 0\\x+1>0\end{cases}}\Rightarrow\hept{\begin{cases}x< -\frac{3}{5}\\x>-1\end{cases}}\Rightarrow-1< x< -\frac{3}{5}\)
2. \(\hept{\begin{cases}x+\frac{3}{5}>0\\x+1< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>-\frac{3}{5}\\x< -1\end{cases}}\)( loại )
Vậy -1 < x < -3/5
d) ( x - 1/3 )( x + 2/5 ) > 0
Xét hai trường hợp :
1.\(\hept{\begin{cases}x-\frac{1}{3}>0\\x+\frac{2}{5}>0\end{cases}}\Rightarrow\hept{\begin{cases}x>\frac{1}{3}\\x>-\frac{2}{5}\end{cases}}\Rightarrow x>\frac{1}{3}\)
2.\(\hept{\begin{cases}x-\frac{1}{3}< 0\\x+\frac{2}{5}< 0\end{cases}}\Rightarrow\hept{\begin{cases}x< \frac{1}{3}\\x< -\frac{2}{5}\end{cases}\Rightarrow}x< -\frac{2}{5}\)
Vây \(\orbr{\begin{cases}x>\frac{1}{3}\\x< -\frac{2}{5}\end{cases}}\)
\(\left|x\right|=a\Leftrightarrow\hept{\begin{cases}x=a,x\ge0\\x=-a,x< 0.\end{cases}}\)
a) x=-5 hoặc x=5
b) |-11|=11
|x|=|-11|=11
x<0
x=-11
c) |13|=13
|x|=|13|=13, x<0
x=-13
d) |x|+|-6|=|25|
|x|+6=25
|x|=25-6=19
x=19 hoặc x=-19
a) Ta có: \(x^2\ge0\forall x\in Q\)
\(y^2\ge0\forall x\in Q\)
\(\Rightarrow x^2+y^2+2014\ge2014\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là 2014, xảy ra khi \(\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
b, Ta có: \(\left(x+30\right)^2\ge0\forall x\in Q\)
\(\left(y-4\right)^2\ge0\forall x\in Q\)
\(\Rightarrow\left(x+30\right)^2+\left(y-4\right)^2+17\ge17\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là 17, xảy ra khi \(\left\{{}\begin{matrix}\left(x+30\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-30\\y=4\end{matrix}\right.\)
c, Ta có: \(\left(y-9\right)^2\ge0\forall x\in Q\)
\(\left|x-3\right|\ge0\forall x\in Q\)
\(\Rightarrow\left(y-9\right)^2+\left|x-3\right|^2-1\ge-1\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là -1 xảy ra khi \(\left\{{}\begin{matrix}\left(y-9\right)^2=0\\\left|x-3\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=9\\x=3\end{matrix}\right.\)
a, \(\left(-7\right)\left(5-x\right)< 0\)
\(< =>5-x>0< =>x< 5\)
b, \(11⋮x-1< =>x-1\inƯ\left(11\right)\in\left\{-11;-1;1;11\right\}\) ( \(x\ne1\) )
\(x\in\left\{-10;0;2;12\right\}\)
c, \(x+8⋮x+1< =>x+1+7⋮x+1\)
\(< =>7⋮x+1< =>x+1\inƯ\left(7\right)\in\left\{-7;-1;1;7\right\}\left(x\ne-1\right)\)
\(< =>x\in\left\{-8;-2;0;6\right\}\)
d, \(\left(x+2\right)\left(5-x\right)>0\)
Chưa học lập bảng xét dấu nên xét TH em nhé !
Nhận thấy ( x + 2 ) ( 5 - x ) > 0 nên x + 2 và 5 - x phải cùng dấu
TH1 : \(\left\{{}\begin{matrix}x+2>0\\5-x>0\end{matrix}\right.< =>\left\{{}\begin{matrix}x>-2\\x< 5\end{matrix}\right.< =>-2< x< 5}\)
TH2:
\(\left\{{}\begin{matrix}x+2< 0\\5-x< 0\end{matrix}\right.< =>\left\{{}\begin{matrix}x< -2\\x>5\end{matrix}\right.< =>x\in\varnothing\)
Từ 2 TH ta kết luận { x | -2 < x < 5 }
Điều kiện về x là gì bạn? Số nguyên, số tự nhiên, số hữu tỉ,...?