Cho ΔABC vuông tại A (AB < AC), đường cao AH. Trên cạnh AC lấy điểm D sao cho AD = AB. Gọi O là trung điểm của BD. . Vẽ (O) đường kính BD cắt cạnh BC tại điểm thứ hai K.
a, C/m: CK.CB = CD.CA
b, Tính ˆAHO
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: ΔABD vuông tại A(gt)
nên A nằm trên đường tròn đường kính BD(Định lí quỹ tích cung chứa góc)
mà BD là đường kính của (O)
nên A\(\in\)(O)(Đpcm)
b) Xét (O) có
\(\widehat{AKB}\) là góc nội tiếp chắn cung AB
\(\widehat{ADB}\) là góc nội tiếp chắn cung AB
Do đó: \(\widehat{AKB}=\widehat{ADB}\)(Hệ quả góc nội tiếp)
a: Xét tứ giác MHKD có
\(\widehat{MHK}=\widehat{MDK}=\widehat{DKH}=90^0\)
Do đó: MHKD là hình chữ nhật
b: Xét tứ giác ADKB có
\(\widehat{DKB}+\widehat{DAB}=180^0\)
=>ADKB nội tiếp
=>\(\widehat{AKB}=\widehat{ADB}=45^0\)
Xét ΔHAK vuông tại H có \(\widehat{HKA}=45^0\)
nên ΔHAK vuông cân tại H
=>HA=HK
góc BEC=1/2*180=90 độ
góc BDC=1/2*180=90 độ
Xét ΔABC có
BD,CE là đường cao
DB cắt CE tại H
=>H là trực tâm
=>AH vuông góc BC tại F
góc MDO=góc MDH+góc ODH
=góc MHD+góc DBC
=góc HBF+góc FHB=90 độ
=>DM là tiếp tuyến của (O)
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
a, Xét đường tròn (O) có: \(\Delta\)BKD nội tiếp; BD là đường kính
\(\Rightarrow\) \(\Delta\)BKD vuông tại K (sự xác định đường tròn)
\(\Rightarrow\) BK \(\perp\) KD
Mà C \(\in\) BK \(\Rightarrow\) CK \(\perp\) KD
Xét \(\Delta\)CKD và \(\Delta\)CAB có:
\(\widehat{CKD}=\widehat{CAB}=90^o\)
\(\widehat{C}\) chung
\(\Rightarrow\) \(\Delta\)CKD ~ \(\Delta\)CAB (gg)
\(\Rightarrow\) \(\dfrac{CK}{CA}=\dfrac{CD}{CB}\) (tỉ số đồng dạng)
\(\Rightarrow\) CK.CB = CD.CA (đpcm)
b, Xét tam giác ABD có: AB = AD (gt)
\(\Rightarrow\) \(\Delta\)ABD cân tại A (dhnb)
Mà AO là trung tuyến ứng với BD của \(\Delta\)ABD (O là tâm của đường tròn đk BD)
\(\Rightarrow\) AO là đường cao ứng với BD (tính chất tam giác cân)
\(\Rightarrow\) \(\widehat{AOB}\) = 90o
Xét tứ giác BHOA có: \(\widehat{BHA}=\widehat{BOA}=90^o\) (AH là đường cao; cmt)
Hai góc có đỉnh kề nhau cùng nhìn cạnh AB dưới 1 góc vuông ko đổi
\(\Rightarrow\) BHOA là tứ giác nội tiếp (dhnb tứ giác nội tiếp)
\(\Rightarrow\) \(\widehat{AHO}=\widehat{ABO}\) (2 góc nội tiếp cùng chắn \(\stackrel\frown{AO}\)) (1)
Xét tam giác ABD cân tại A có: \(\widehat{BAD}=90^o\) (tam giác ABD vuông tại A)
\(\Rightarrow\) Tam giác ABD vuông cân tại A
\(\Rightarrow\) \(\widehat{ABD}\) = 45o (t/c tam giác vuông cân) (2)
Từ (1) và (2) \(\Rightarrow\) \(\widehat{AHO}=45^o\)
Chúc bn học tốt!