K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2021

a, Xét đường tròn (O) có: \(\Delta\)BKD nội tiếp; BD là đường kính

\(\Rightarrow\) \(\Delta\)BKD vuông tại K (sự xác định đường tròn)

\(\Rightarrow\) BK \(\perp\) KD

Mà C \(\in\) BK \(\Rightarrow\) CK \(\perp\) KD

Xét \(\Delta\)CKD và \(\Delta\)CAB có:

\(\widehat{CKD}=\widehat{CAB}=90^o\)

\(\widehat{C}\) chung

\(\Rightarrow\) \(\Delta\)CKD ~ \(\Delta\)CAB (gg)

\(\Rightarrow\) \(\dfrac{CK}{CA}=\dfrac{CD}{CB}\) (tỉ số đồng dạng)

\(\Rightarrow\) CK.CB = CD.CA (đpcm)

b, Xét tam giác ABD có: AB = AD (gt)

\(\Rightarrow\) \(\Delta\)ABD cân tại A (dhnb)

Mà AO là trung tuyến ứng với BD của \(\Delta\)ABD (O là tâm của đường tròn đk BD)

\(\Rightarrow\) AO là đường cao ứng với BD (tính chất tam giác cân)

\(\Rightarrow\) \(\widehat{AOB}\) = 90o

Xét tứ giác BHOA có: \(\widehat{BHA}=\widehat{BOA}=90^o\) (AH là đường cao; cmt)

Hai góc có đỉnh kề nhau cùng nhìn cạnh AB dưới 1 góc vuông ko đổi

\(\Rightarrow\) BHOA là tứ giác nội tiếp (dhnb tứ giác nội tiếp)

\(\Rightarrow\) \(\widehat{AHO}=\widehat{ABO}\) (2 góc nội tiếp cùng chắn \(\stackrel\frown{AO}\)) (1)

Xét tam giác ABD cân tại A có: \(\widehat{BAD}=90^o\) (tam giác ABD vuông tại A)

\(\Rightarrow\) Tam giác ABD vuông cân tại A 

\(\Rightarrow\) \(\widehat{ABD}\) = 45o (t/c tam giác vuông cân) (2)

Từ (1) và (2) \(\Rightarrow\) \(\widehat{AHO}=45^o\)

Chúc bn học tốt!

a) Ta có: ΔABD vuông tại A(gt)

nên A nằm trên đường tròn đường kính BD(Định lí quỹ tích cung chứa góc)

mà BD là đường kính của (O)

nên A\(\in\)(O)(Đpcm)

b) Xét (O) có 

\(\widehat{AKB}\) là góc nội tiếp chắn cung AB

\(\widehat{ADB}\) là góc nội tiếp chắn cung AB

Do đó: \(\widehat{AKB}=\widehat{ADB}\)(Hệ quả góc nội tiếp)

4 tháng 1 2023

quên cách làm mất rồi...

4 tháng 1 2023

khác gì nhaubucminh

 

a: Xét tứ giác MHKD có

\(\widehat{MHK}=\widehat{MDK}=\widehat{DKH}=90^0\)

Do đó: MHKD là hình chữ nhật

b: Xét tứ giác ADKB có

\(\widehat{DKB}+\widehat{DAB}=180^0\)

=>ADKB nội tiếp

=>\(\widehat{AKB}=\widehat{ADB}=45^0\)

Xét ΔHAK vuông tại H có \(\widehat{HKA}=45^0\)

nên ΔHAK vuông cân tại H

=>HA=HK

góc BEC=1/2*180=90 độ

góc BDC=1/2*180=90 độ

Xét ΔABC có

BD,CE là đường cao

DB cắt CE tại H

=>H là trực tâm

=>AH vuông góc BC tại F

góc MDO=góc MDH+góc ODH

=góc MHD+góc DBC

=góc HBF+góc FHB=90 độ

=>DM là tiếp tuyến của (O)

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:a, =B, =*c, =3, cho...
Đọc tiếp

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
a, =
B, =*
c, =
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM

2
28 tháng 2 2016

giúp mình với nha 

Câu 3:

Xét ΔMDC có AB//CD

nên MA/MD=MB/MC(1)

Xét ΔMDK có AI//DK

nên AI/DK=MA/MD(2)

Xét ΔMKC có IB//KC

nên IB/KC=MB/MC(3)

Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK

Vì AI//KC nên AI/KC=NI/NK=NA/NC

Vì IB//DK nên IB/DK=NI/NK

=>AI/KC=IB/DK

mà AI/DK=IB/KC

nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)

=>AI=IB

=>I là trung điểm của AB

AI/DK=BI/KC

mà AI=BI

nên DK=KC

hay K là trung điểm của CD