giúp e bài này với ạaa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a1/\(\dfrac{2}{x+y}+\dfrac{1}{x-y}+\dfrac{-3x}{x^2-y^2}\)
\(=\dfrac{2\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}+\dfrac{x+y}{\left(x+y\right)\left(x-y\right)}+\dfrac{-3x}{\left(x+y\right)\left(x-y\right)}\)
\(=\dfrac{2x-2y+x+y-3x}{\left(x+y\right)\left(x-y\right)}\)
\(=\dfrac{-y}{\left(x+y\right)\left(x-y\right)}\)
a2/\(\dfrac{5x^2-y^2}{xy}-\dfrac{3x-2y}{y}\)
\(=\dfrac{5x^2-y^2}{xy}-\dfrac{3x^2-2xy}{xy}\)
\(=\dfrac{5x^2-y^2-3x^2+2xy}{xy}\)
\(=\dfrac{2x^2-y^2+2xy}{xy}\)
b/\(\dfrac{2x}{x^2+2xy}+\dfrac{y}{xy-2y^2}+\dfrac{4}{x^2-4y^2}\)
\(=\dfrac{2x}{x\left(x+2y\right)}+\dfrac{y}{y\left(x-2y\right)}+\dfrac{4}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\dfrac{2}{x+2y}+\dfrac{1}{x-2y}+\dfrac{4}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\dfrac{2\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\dfrac{x+2y}{\left(x-2y\right)\left(x+2y\right)}+\dfrac{4}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\dfrac{2x-4y+x+2y+4}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\dfrac{3x-2y+4}{\left(x-2y\right)\left(x+2y\right)}\)
#TienDatzZz
a) \(\dfrac{2}{x+y}+\dfrac{1}{x-y}+\dfrac{-3x}{x^2-Y^2}\)
\(\dfrac{2\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}+\dfrac{\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}+\dfrac{-3x}{x^2-y^2}\)
\(\dfrac{2x-2y+x+y-3x}{x^2-y^2}\)
\(\dfrac{-y}{x^2-y^2}\)
Phương trình hoành độ giao điểm là:
\(x^2-2mx+m^2-m=0\)
a: Để (P) cắt (d) tại hai điểm phân biệt thì \(\left(-2m\right)^2-4\left(m^2-m\right)>0\)
=>4m>0
hay m>0
b: Để (P) cắt (d) tại hai điểm nằm về hai phía của trục tung thì \(m^2-m< 0\)
=>0<m<1
xét TH: K mở =>(R1 nt R2)//(R3 nt R4)
\(=>Uab=U12=U34=24V\)
\(=>I12=I1=I2=\dfrac{U12}{R12}=\dfrac{24}{R1+R2}=\dfrac{24}{12}=2A\)
\(=>I34=I3=I4=\dfrac{U34}{R3+R4}=\dfrac{24}{12}=2A\)
xét TH K đóng =>(R1//R3) nt(R2//R4)(kết quả hơi xấu)
\(=>I13=I24=\dfrac{Uab}{Rtd}=\dfrac{24}{\dfrac{R1.R3}{R1+R3}+\dfrac{R2.R4}{R2+R4}}=\dfrac{24}{\dfrac{4.6}{4+6}+\dfrac{8.6}{8+6}}=\dfrac{70}{17}A\)
\(=>U13=U1=U3=I13.R13=\dfrac{168}{17}V=>I1=\dfrac{\dfrac{168}{17}}{R1}=\dfrac{42}{17}A=>I3=\dfrac{\dfrac{168}{17}}{R3}=\dfrac{28}{17}A\)
làm tương tự đối với U24 để tìm I2,I4
b, (R1 nt R2)//(R3 nt R4) tính Ucd=-U1+U3, tính U1,U3 là xong
Xét ΔABC có
BE,CF là đường phân giác
BE cắt CF tại I
Do đó: I là tâm đường tròn nội tiếpΔABC
=>d(I;BC)=d(I;AB)=d(I;AC) và AI là phân giác của góc BAC
ΔABC cân tại A
mà AI là phân giác
nên AI vuông góc BC tại D
=>d(I;BC)=ID
=>d(I;AB)=d(I;AC)=ID
=>AB,AC là tiếp tuyến của (I;ID)
1: \(=\left(\dfrac{\sqrt{x}+2}{2\left(\sqrt{x}-2\right)}-\dfrac{4\sqrt{x}}{x-4}\right):\dfrac{\sqrt{x}-2}{2}\)
\(=\dfrac{x+4\sqrt{x}+4-8\sqrt{x}}{2\left(x-4\right)}\cdot\dfrac{2}{\sqrt{x}-2}\)
\(=\dfrac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)^2\cdot\left(\sqrt{x}+2\right)}=\dfrac{1}{\sqrt{x}+2}\)
3: \(=\dfrac{x+\sqrt{x}-5\sqrt{x}+3}{x-1}\cdot\dfrac{2\sqrt{x}+6-4}{\sqrt{x}+3}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{2\left(\sqrt{x}+1\right)}{\sqrt{x}+3}=\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)