M.n cho mik hỏi cách chứng minh ạ
cos4α−sin4α=cos
2α
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: (sina+cosa)^2
=sin^2a+cos^2a+2*sina*cosa
=1+sin2a
b: \(cos^4a-sin^4a=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)\)
\(=cos^2a-sin^2a=cos2a\)
Ta có:
`sin^4 \alpha + cos^4 \alpha -sin^6 \alpha- cos^6\alpha`
`=sin^4\alpha+cos^4\alpha-(sin^2\alpha+cos^2\alpha)(sin^4\alpha-sin^2\alpha cos^2\alpha+cos^4\alpha)`
`=sin^4\alpha + cos^4\alpha-(sin^4\alpha-sin^2\alpha cos^2\alpha+cos^4\alpha)`
`=sin^2\alpha cos^2\alpha(ĐPCM)`
A = 4 [ ( sin 2 α + cos 2 α ) 2 - 2 sin 2 α cos 2 α ] - cos4α
= 4 ( 1 - sin 2 2 α / 2 ) - 1 + 2 sin 2 2 α = 3
A = 2 ( sin 2 α + cos 2 α ) ( sin 4 α + cos 4 α - sin 2 α cos 2 α )
- 3 ( sin 4 α + cos 4 α )
= - sin 4 α - cos 4 α - 2 sin 2 α cos 2 α
= - ( sin 2 α + cos 2 α ) 2 = - 1
\(\left(sin^2\alpha\right)^2+\left(cos^2\alpha\right)^2+2.sin\alpha.cos\alpha\\ =\left(sin^2\alpha+cos^2\alpha\right)^2\\ =\left(1\right)^2=1\)
\(A=sin^4a+2\cdot sin^4a\cdot cos^2a+cos^4a+2\cdot cos^4a\cdot sin^2a\)
\(=\left(sin^4a+cos^4a\right)+2\cdot sina^2a\cdot cos^2a\left(sin^2a+cos^2a\right)\)
\(=sin^4a+cos^4a+2\cdot sin^2a\cdot cos^2a\)
\(=\left(sin^2a+cos^2a\right)^2=1\)
a: VT=sin^2a(sin^2a+cos^2a)+cos^2a
=sin^2a+cos^2a
=1=VP
b: \(VT=\dfrac{sina+sina\cdot cosa+sina-sina\cdot cosa}{1-cos^2a}=\dfrac{2sina}{sin^2a}=\dfrac{2}{sina}=VP\)
c: \(VT=\dfrac{sin^2a+1+2cosa+cos^2a}{sina\left(1+cosa\right)}\)
\(=\dfrac{2\left(cosa+1\right)}{sina\left(1+cosa\right)}=\dfrac{2}{sina}=VP\)
cos α = 2 . cos 2 α 2 - 1 = 2 . 0 - 1 = - 1 cos 2 α = 2 cos 2 α - 1 = 2 . ( - 1 ) 2 - 1 = 1 cos 4 α = 2 cos 2 2 α - 1 = 2 . 1 2 - 1 = 1 cos 7 α = - 1 cos α + cos 2 α + cos 4 α + cos 7 α = - 1 + 1 + 1 + ( - 1 ) = 0
cos^4a-sin^4a
=(cos^2a-sin^2a)(cos^2a+sin^2a)
=cos^2a-sin^2a
=cos2a