K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2017

\(\frac{\left(x+1\right)}{x-4}+2>0\)

điều kiện x khác 4

\(A\Leftrightarrow\left(x+1\right)+2.\left(x-4\right)>0\)

     \(\Leftrightarrow x+1+2x-8>0\)

     \(\Leftrightarrow3x>7\Leftrightarrow x>\frac{7}{3}\)

các giái trị của x là:   x > 7/4 loại nghiệm x = 4 ( theo điều kiện vì x khác 4 )

    

24 tháng 11 2018

\(=\left(\frac{x}{\left(x+2\right)\left(x-2\right)}-\frac{2}{x-2}+\frac{1}{x+2}\right):\left(\frac{\left(x-2\right)\left(x+2\right)+10-x}{x+2}\right)\)

\(=\left(\frac{x-2\left(x+2\right)+\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\right):\left(\frac{x^2-4+10-x}{x+2}\right)\)

24 tháng 11 2018

Đổi 10-x lại thành\(10-x^2\) nha, mk thiếu! sorry!

\(=\left(\frac{x-2x-4+x-2}{\left(x+2\right)\left(x-2\right)}\right):\left(\frac{x^2-4+10-x^2}{x+2}\right)\)

\(=\frac{-6}{\left(x+2\right)\left(x-2\right)}.\frac{x+2}{6}\)

\(=\frac{-6\left(x+2\right)}{6\left(x-2\right)\left(x+2\right)}=-\frac{1}{x-2}\)

8 tháng 3 2019

Cho đường tròn (o)  Và điểm A khánh  nằm ngoài đường tròn từ A vê 2 tiếp tuyến AB, AC với đường tròn . D nằm giữa A và E tia phân giác của góc DBE cắt DE ở I 

a)  chứng minh rằng AB2 =AD * AE

b) Chứng minh rằng BD/BE=CD/CE

AH
Akai Haruma
Giáo viên
12 tháng 10

Lời giải:
ĐKXĐ: $x\neq \pm 2$

\(A=\left[\frac{x}{(x-2)(x+2)}-\frac{2(x+2)}{(x-2)(x+2)}+\frac{x-2}{(x+2)(x-2)}\right]:\frac{x^2-4+10-x^2}{x+2}\\ =\frac{x-2(x+2)+x-2}{(x-2)(x+2)}:\frac{6}{x+2}\\ =\frac{-6}{(x-2)(x+2)}.\frac{x+2}{6}\\ =\frac{-1}{x-2}=\frac{1}{2-x}\)

Để $A<0\Leftrightarrow \frac{1}{2-x}<0$

$\Leftrightarrow 2-x<0\Leftrightarrow x>2$

Kết hợp với ĐKXĐ suy ra $x>2$

b.

Với $x$ nguyên, để $A$ nguyên thì $1\vdots 2-x$

$\Rightarrow 2-x=1$ hoặc $2-x=-1$

$\Rightarrow x=1$ hoặc $x=3$

25 tháng 3 2018

d)  \(A>0\Leftrightarrow\frac{-1}{x-2}>0\)

\(\Leftrightarrow x-2< 0\)  ( vì \(-1< 0\))

\(\Leftrightarrow x< 2\)

25 tháng 3 2018

\(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(A=\)\(\left[\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right]\)

  \(:\left[\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right]\)

\(A=\frac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}:\left[\frac{x^2-4+10-x^2}{x+2}\right]\)

\(A=\frac{-6}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)

\(A=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}\)

\(A=\frac{-1}{x-2}\)