4.x+5.x=1023 nhờ hướng dẫn cụ thể em với ạ. Xin cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
865+x:5=900
x:5 = 900 - 865
x:5 = 35
x = 35:5
x = 7
Vậy x = 7
\(3\left(x-1\right)^2-3x\left(2-5\right)=21\)
\(\Leftrightarrow3x^2-6x+3+9x-21=0\)
\(\Leftrightarrow3x^2+3x-18=0\)
\(\Leftrightarrow3\left(x^2+x-6\right)=0\)
\(\Leftrightarrow3\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
Vậy \(S=\left\{2;-3\right\}\)
Nhân bung ra, rút gọn rồi đưa về bất đẳng thức: \(\sum\dfrac{xy}{z}\ge\sum2x\), đến đây dùng BDT Cauchy là xong rồi em.
\(\Leftrightarrow4.25^x-4.5^x+1=4y^4+8y^3+12y^2+16y+41\)
\(\Leftrightarrow\left(2.5^x-1\right)^2=4y^4+8y^3+12y^2+16y+41\)
Ta có:
\(4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+2\right)^2+8y+37>\left(2y^2+2y+2\right)^2\)
\(4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+5\right)^2+4\left(y-1\right)\left(3y+4\right)\ge\left(2y^2+2y+5\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+3\right)^2\\4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+4\right)^2\\4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+5\right)^2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y^2-y-8=0\left(\text{không có nghiệm nguyên}\right)\\8y^2-25=0\left(\text{không có nghiệm nguyên}\right)\\\left(y-1\right)\left(3y+4\right)=0\end{matrix}\right.\)
\(\Rightarrow y=1\)
Thế vào pt ban đầu: \(25^x-5^x=20\)
Đặt \(5^x=t>0\Rightarrow t^2-t-20=0\Rightarrow\left[{}\begin{matrix}t=5\\t=-4\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow5^x=5\Rightarrow x=1\)
`4x+5x=1023`
`=>x(4+5)=1023`
`=>x.9=1023`
`=>x=1023:9`
`=>x=341/3`