( x+3)3 + ( x+3)3 =
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
??? ...
??????????????????????????????????????????????????...............................................
6*6*6*6*6*6*6=279936
3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 =4782969
Ý bạn là \(f(x)=\frac{1}{9+x^2}+\frac{3}{9+x^2}\) hay thế nào? Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo để được hỗ trợ tốt hơn).
cái gạch đầu dòng ko phải dấu âm đâu chị em viết dấu gạch đầu dòng chị hiểu nhầm nhé
a) \(x-\dfrac{3}{4}=6\times\dfrac{3}{8}\)
\(x-\dfrac{3}{4}=\dfrac{9}{4}\)
=> \(x=\dfrac{9}{4}+\dfrac{3}{4}=3\)
b) \(\dfrac{7}{8}:x=3-\dfrac{1}{2}\)
\(\dfrac{7}{8}:x=\dfrac{5}{2}\)
=> \(x=\dfrac{7}{8}:\dfrac{5}{2}=\dfrac{7}{20}\)
c) \(x+\dfrac{1}{2}\times\dfrac{1}{3}=\dfrac{3}{4}\)
\(x+\dfrac{1}{6}=\dfrac{3}{4}\)
=> \(x=\dfrac{3}{4}-\dfrac{1}{6}=\dfrac{7}{12}\)
d) \(\dfrac{3}{2}\times\dfrac{4}{5}-x=\dfrac{2}{3}\)
\(\dfrac{6}{5}-x=\dfrac{2}{3}\)
=> \(x=\dfrac{6}{5}-\dfrac{2}{3}=\dfrac{8}{15}\)
e) \(x\times3\dfrac{1}{3}=3\dfrac{1}{3}:4\dfrac{1}{4}\)(?)
\(x\times\dfrac{10}{3}=\dfrac{40}{51}\)
=> \(x=\dfrac{40}{51}:\dfrac{10}{3}=\dfrac{4}{17}\)
f) \(5\dfrac{2}{3}:x=3\dfrac{2}{3}-2\)
\(\dfrac{17}{3}:x=\dfrac{5}{3}\)
=> \(x=\dfrac{17}{3}:\dfrac{5}{3}=\dfrac{17}{5}\)
a: =>x-3/4=18/8=9/4
=>x=9/4+3/4=12/4=3
b: =>7/8:x=5/2
=>x=7/8:5/2=7/8*2/5=14/40=7/20
c: x+1/2*1/3=3/4
=>x+1/6=3/4
=>x=3/4-1/6=9/12-2/12=7/12
d: =>12/10-x=2/3
=>6/5-x=2/3
=>x=6/5-2/3=18/15-10/15=8/15
e: =>x*10/3=10/3:17/4=10/3*4/17
=>x=4/17
f: =>17/3:x=13/3-5/2=26/6-15/6=11/6
=>x=17/3:11/6=17/3*6/11=34/11
a: Ta có: \(\left(x+1\right)^3-\left(x+2\right)\left(x-1\right)^2-3\left(x-3\right)\left(x+3\right)=5\)
\(\Leftrightarrow x^3+3x^2+3x+1-\left(x+2\right)\left(x^2-2x+1\right)-3\left(x^2-9\right)=5\)
\(\Leftrightarrow x^3+3x^2+3x+1-\left(x^3-2x^2+x+2x^2-4x+2\right)-3\left(x^2-9\right)=5\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x-2-3x^2+9=5\)
\(\Leftrightarrow6x=-3\)
hay \(x=-\dfrac{1}{2}\)
b: Ta có: \(\left(x+1\right)^3+\left(x-1\right)^3=\left(x+2\right)^3+\left(x-2\right)^3\)
\(\Leftrightarrow x^3+3x^2+3x+1+x^3-3x^2+3x-1=x^3+6x^2+12x+8+x^3-6x^2+12x-8\)
\(\Leftrightarrow2x^3+6x=2x^3+24x\)
\(\Leftrightarrow x=0\)
c: Ta có: \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-10\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-1=-10\)
\(\Leftrightarrow12x=-11\)
hay \(x=-\dfrac{11}{12}\)
`(x+3)^{3}+(x+3)^{3}`
`=2(x+3)^{3}`
`=2(x^{3}+6x^{2}+9x+27)`
`=2x^{3}+12x^{2}+18x+54`