Tìm x,biết:
( x + 2 )2 = ( 2x - 1)2
Mọi người giải rõ cách làm giùm mình nha!Mình cảm ơn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ơi hình như sai đề thì phải a bạn mình nghĩ phải là \(\left(x^2-x+2\right)^2\)
\(\left(x^2-x+2\right)+\left(x-2\right)^2=\left(x^2-x+2\right)+x^2-2^2\)
\(=x^2-x+2+x^2-2^2\)\(=\left(x^2+x^2\right)+\left(2-2^2\right)-x\)
\(=2x^2-\left(2-4\right)-x=2x^2-\left(-2\right)-x\)
\(=2x^2+2-x=2x^2+2.1-x=2\left(x^2+1\right)-x\)
a) \(\left(x+2\right)^2=4\left(2x-1\right)^2\)
\(\left(x+2\right)^2-4\left(2x-1\right)^2=0\)
\(\left(x+2\right)^2-\left[2\left(2x-1\right)\right]^2=0\)
\(\left(x+2\right)^2-\left(4x-2\right)^2=0\)
\(\left(x+2-4x+2\right)\left(x+2+4x-2\right)=0\)
\(6x\left(-3x+4\right)=0\)
\(\Rightarrow6x=0\) hoặc \(-3x+4=0\)
*) \(6x=0\)
\(x=0\)
*) \(-3x+4=0\)
\(3x=4\)
\(x=\dfrac{4}{3}\)
Vậy \(x=0;x=\dfrac{4}{3}\)
b) \(4x\left(x-2019\right)-x+2019=0\)
\(4x\left(x-2019\right)-\left(x-2019\right)=0\)
\(\left(x-2019\right)\left(4x-1\right)=0\)
\(\Rightarrow x-2019=0\) hoặc \(4x-1=0\)
*) \(x-2019=0\)
\(x=2019\)
*) \(4x-1=0\)
\(4x=1\)
\(x=\dfrac{1}{4}\)
Vậy \(x=\dfrac{1}{4};x=2019\)
\(...\Rightarrow x^3-9x^2+27x-27-\left(x^3-27\right)+9\left(x^2+2x+1\right)=15\)
\(\Rightarrow x^3-9x^2+27x-27-x^3+27+9x^2+18x+9=15\)
\(\Rightarrow45x+9=15\Rightarrow45x=6\Rightarrow x=\dfrac{6}{45}=\dfrac{2}{15}\)
\(\frac{2x+2}{5x-3}=\frac{2x+12}{5x+18}\)
=> ( 2x + 2 ) ( 5x + 18 ) = ( 2x + 12 ) ( 5x - 3 )
=> 2x ( 5x + 18 ) + 2 ( 5x + 18 ) = 2x ( 5x - 3 ) + 12 ( 5x - 3 )
=> 10 x 2 + 36x + 10x + 36 = 10 x 2 - 6x + 60 x - 36
=> 36x + 10x + 6x - 60x = - 36 - 36
=> - 8 x = - 72
=> x = 9
a, 2\(xy\) - 2\(x\) + 3\(y\) = -9
(2\(xy\) - 2\(x\)) + 3\(y\) - 3 = -12
2\(x\)(\(y-1\)) + 3(\(y-1\)) = -12
(\(y-1\))(2\(x\) + 3) = -12
Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}
Lập bảng ta có:
\(y\)-1 | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
\(y\) | -11 | -5 | -3 | -2 | -1 | 0 | 2 | 3 | 4 | 5 | 7 | 13 |
2\(x\)+3 | 1 | 2 | 3 | 4 | 6 | 12 | -12 | -6 | -4 | -3 | -2 | -1 |
\(x\) | -1 | -\(\dfrac{1}{2}\) | 0 | \(\dfrac{1}{2}\) | \(\dfrac{3}{2}\) | \(\dfrac{9}{2}\) | \(-\dfrac{15}{2}\) | \(-\dfrac{9}{2}\) | -\(\dfrac{7}{2}\) | -3 | \(-\dfrac{5}{2}\) | -2 |
Theo bảng trên ta có: Các cặp \(x\);\(y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (-1; -11); (0; -3); (-3; 5); ( -2; 13)
b, (\(x+1\))2(\(y\) - 3) = -4
Ư(4) = {-4; -2; -1; 1; 2; 4}
Lập bảng ta có:
\(\left(x+1\right)^2\) | - 4(loại) | -2(loại) | -1(loại) | 1 | 2 | 4 |
\(x\) | 0 | \(\pm\)\(\sqrt{2}\)(loại) | 1; -3 | |||
\(y-3\) | 1 | 2 | 4 | -4 | -2 | -1 |
\(y\) | -1 | 2 |
Theo bảng trên ta có: các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (0; -1); (-3; 2); (1; 2)
A. \(xy-3y+x=5\Leftrightarrow y\left(x-3\right)+\left(x-3\right)=2\Leftrightarrow\left(x-3\right)\left(y+1\right)=2\)
\(\hept{\begin{cases}x-3=2\\y+1=1\end{cases}};\hept{\begin{cases}x-3=1\\y+1=2\end{cases}};\hept{\begin{cases}x-3=-1\\y+1=-2\end{cases}};\hept{\begin{cases}x-3=-2\\y+1=-1\end{cases}}\) giải ra ta được các cặp nghiệm là (x;y) = (5;0), (4;1), (2;-3), (1;-2)
B. Ta có: \(x=99.1+98.2+97.3+...+3.97+2.98+1.99\) dễ thấy trong mỗi hạng tử đều có tổng các thừa số bằng 100 nên ta áp dụng:
Ta được kết quả: x = 166650
\(\left(x+2\right)^2=\left(2x-1\right)^2\\ \Leftrightarrow\left(x+2\right)^2-\left(2x-1\right)^2=0\\\Leftrightarrow\left[x+2-\left(2x-1\right)\right]\left[x+2+2x-1\right]=0\\ \Leftrightarrow\left(x+2-2x+1\right)\left(x+2+2x-1\right)=0\\ \Leftrightarrow\left(-x+3\right)\left(3x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}-x+3=0\\3x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-x=-3\\3x=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{3}\end{matrix}\right.\)
\(\left(x+2\right)^2=\left(2x-1\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=2x-1\\x+2=-\left(2x-1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2x=-1-2\\x+2=-2x+1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=-3\\x+2x=1-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\3x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{3}\end{matrix}\right.\)