K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
27 tháng 7 2023
P
Phong
CTVHS
27 tháng 7 2023

\(2^{x+3}-2^{x+1}-2^x=40\)

\(\Rightarrow2^x\cdot\left(2^3-2-1\right)=40\)

\(\Rightarrow2^x\cdot5=40\)

\(\Rightarrow2^x=40:5\)

\(\Rightarrow2^x=8\)

\(\Rightarrow2^x=2^3\)

\(\Rightarrow x=3\)

30 tháng 10 2021

\(a,\Leftrightarrow x^3=\dfrac{20}{3}\Leftrightarrow x=\sqrt[3]{\dfrac{20}{3}}\\ b,\Leftrightarrow x-1=9\Leftrightarrow x=10\\ c,\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\\ d,\Leftrightarrow2x+1=5\Leftrightarrow x=2\\ e,\Leftrightarrow2x-4=4\Leftrightarrow x=4\)

30 tháng 10 2021

Câu a) xem lại đề giùm nhé em

b) \(\left(x-1\right)^3=9^3\)

\(x-1=9\)

\(x=10\)

Vậy \(x=10\)

c) \(\left(x-1\right)^2=25\)

\(x-1=5\) hoặc \(x-1=-5\)

\(x-1=5\)

\(x=6\)

\(x-1=-5\)

\(x=-4\)

Vậy \(x=-4\)\(x=6\)

d) \(\left(2x+1\right)^3=125\)

\(\left(2x+1\right)^3=5^3\)

\(2x+1=5\)

\(2x=4\)

\(x=2\)

Vậy \(x=2\)

e) Sửa đề: \(\left(2x+4\right)^3=64\)

\(\left(2x+4\right)^3=4^3\)

\(2x+4=4\)

\(2x=0\)

\(x=0\)

Vậy \(x=0\)

25 tháng 3 2020

1) \(2x\cdot\left(x-3\right)-5=3x\left(2x-5\right)-4x^2+40\)

\(\Leftrightarrow2x^2-6x-5=6x^2-15x-4x^2+40\)

\(\Leftrightarrow2x^2-6x-5=2x^2-15x+40\)

\(\Leftrightarrow2x^2-6x-5-2x^2+15x-40=0\)

\(\Leftrightarrow9x-45=0\)

<=> x=5

2) x(2x-1)-5(-7)2=2x2-2x+5

<=> 2x2-x-5.49=2x2-2x+5

<=> 2x2-x-245-2x2+2x-5=0

<=> x-250=0

<=> x=250

3) |a-2|=10

\(\Leftrightarrow\orbr{\begin{cases}x-2=10\\x-2=-10\end{cases}\Leftrightarrow\orbr{\begin{cases}x=12\\x=-8\end{cases}}}\)

4) |x|=-5

=> Không tồn tại giá trị của x thỏa mãn vì |x| >=0 với mọi x thuộc Z

9 tháng 6 2018
x \(-\frac{1}{2}\) \(\frac{3}{2}\) 
2x+1-0+|+
2x-3-|-0+

+) Nếu  \(x\le-\frac{1}{2}\Leftrightarrow\left|2x-3\right|=3-2x\)

                                        \(\left|2x+1\right|=-2x-1\)

\(pt\Leftrightarrow3-2x-2x-1=4\)

( nhập vào máy )

\(\Leftrightarrow x=-0,5\left(tm\right)\)

+) Nếu  \(-\frac{1}{2}< x< \frac{3}{2}\)thì | 2x - 3 | = 3 - 2x

                                                    | 2x + 1 | = 2x + 1

\(pt\Leftrightarrow3-2x+2x+1=4\)

\(\Leftrightarrow x=-0,5\)( loại )

+) Nếu  \(x\ge\frac{3}{2}\)thì | 2x - 3 | = 2x - 3

                                    | 2x + 1 | = 2x + 1

\(pt\Leftrightarrow2x-3+2x+1=4\)

\(\Leftrightarrow x=1,5\left(tm\right)\)

Vậy  \(x\in\left\{-0,5;1,5\right\}\)

17 tháng 7 2021

Mik sẽ k cho bạn đó mik viết nhầm

28 tháng 7

Bước 1: Áp dụng quy tắc lũy thừa

Ta biết rằng:

\(a^{m} \cdot a^{n} = a^{m + n}\)

Nên:

\(\left(\left(\right. \frac{1}{4} \left.\right)\right)^{3} \cdot \left(\left(\right. \frac{1}{4} \left.\right)\right)^{5} \cdot \ldots \cdot \left(\left(\right. \frac{1}{4} \left.\right)\right)^{97} = \left(\left(\right. \frac{1}{4} \left.\right)\right)^{T}\)

Trong đó \(T\) là tổng các số mũ:

\(T = 3 + 5 + 7 + \ldots + 97\)


Bước 2: Tính tổng \(T\)

Dãy số \(3 + 5 + 7 + \ldots + 97\) là một cấp số cộng:

  • Số hạng đầu: \(a = 3\)
  • Số hạng cuối: \(l = 97\)
  • Công sai: \(d = 2\)

Tính số lượng số hạng:

\(n = \frac{l - a}{d} + 1 = \frac{97 - 3}{2} + 1 = 47 + 1 = 48\)

Tính tổng:

\(T = \frac{n}{2} \left(\right. a + l \left.\right) = \frac{48}{2} \left(\right. 3 + 97 \left.\right) = 24 \cdot 100 = 2400\)


Kết quả cuối cùng:

\(\left(\left(\right. \frac{1}{4} \left.\right)\right)^{2400} = 4^{- 2400}\)


Đáp án: \(\boxed{4^{- 2400}}\)

29 tháng 1 2019

a)5-2x=3x+20

   5=3x+20+2x

   5=5x+20

=>5x+20=5

    5x=5-20

    5x=-15

   x=(-15):5

  x=-3

29 tháng 1 2019

Bùi Ngọc Truongf Sơn làm nốt cho mình 2 bài còn lại đi

9 tháng 9 2021

\(a,-\left|2x-3\right|\le0,\forall x\Leftrightarrow-\left|2x-3\right|+3\le3\)

Dấu \("="\Leftrightarrow x=\dfrac{3}{2}\)

\(b,-\left|2-3x\right|\le0,\forall x\Leftrightarrow-\left|2-3x\right|-5\le-5\)

Dấu \("="\Leftrightarrow x=\dfrac{2}{3}\)

a: \(A=-\left|2x-3\right|+3\le3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)

b: \(B=-\left|2-3x\right|-5\le-5\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{2}{3}\)