K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2023

(3x - 2 ) = 169

3x - 2 = 169

3x = 169+ 2 

3x = 171

  x = 171 : 3 

   x = 57

27 tháng 7 2023

( 3x - 2 ) .2 = 169

  3x - 2       = 169 : 2 

  3x - 2       =  84,5

  3x            = 84,5 + 2 

  3x            = 86,5 

    x             = 86,5 : 3 

    x              = \(\dfrac{173}{6}\)

5 tháng 5 2018

@chú tuổi gì

7 tháng 5 2017

a) pt a <=> 3x+1=0     hoặc        x-2000=0         hoặc      3x+6000=0

           <=> x=-1/3      hoặc        x=2000            hoặc      x=-2000

21 tháng 4 2016

\(A\left(0\right)=3\cdot0^4+0^3-0^2-0,25\cdot0\)

           \(=3\cdot0+0-0-0,25\cdot0\)

           \(=0+0-0-0\)

           \(=0=0\)

\(\Rightarrow x=0\) là nghiệm của đa thức A(x)

17 tháng 3 2019

\(\frac{3x+25}{144}=\frac{2y-169}{25}=\frac{z+144}{169}=\frac{3x+2y+z}{338}=\frac{169}{338}=\frac{1}{2}\)

\(\Rightarrow3x+25=\frac{1}{2}.144=72\)

\(\Leftrightarrow x=\frac{47}{3}\)

\(2y-169=\frac{1}{2}.25=\frac{25}{2}\)

\(\Leftrightarrow y=\frac{363}{4}\)

\(z+144=\frac{1}{2}.169=\frac{169}{2}\)

\(\Leftrightarrow z=\frac{-119}{2}\)

17 tháng 3 2019

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{3x+25}{144}=\frac{2y-169}{25}=\frac{z+144}{169}=\frac{\left(3x+2y+z\right)+\left(25-169+144\right)}{144+25+169}=\frac{169+25-169+144}{144+25+169}=\)

\(\frac{1}{2}\)

Ta có

\(\frac{3x+25}{144}=\frac{1}{2}\Rightarrow6x+50=144\Rightarrow6x=94\Rightarrow x=\frac{47}{3}\)

\(\frac{2y-169}{25}=\frac{1}{2}\Rightarrow4y-338=25\Rightarrow4y=363\Rightarrow y=\frac{363}{4}\)

\(\frac{z+144}{169}=\frac{1}{2}\Rightarrow2z+288=169\Rightarrow2z=-119\Rightarrow z=\frac{-119}{2}\)

28 tháng 9 2016

1) 2016 +x = 169x

<=> 2016 = 168x

<=> x=12

2) (26 - 3x) : 5= 4

<=> 26 - 3x = 20

<=> 3x =6

<=> x=2

3) x + 32 - 17 = 21

<=> x + 15 = 21

<=> x= 6

26 tháng 7 2023

hơi lạ

19 tháng 6 2019

\(a,\)( sửa lại xíu đề cho đúng nhé )

\(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=-\frac{2x}{x^2+x+1}\)

\(\Rightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}=-\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\Rightarrow x^2+x+1-3x^2=-2x^2+2x\)

\(\Rightarrow x=1\)

19 tháng 6 2019

\(g,\)\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)=-16\)

\(\Rightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)=-16\)

Đặt \(x^2+10x+16=a\)

\(\Rightarrow a\left(a+8\right)=-16\)

\(\Rightarrow a^2+8a+16=0\)

\(\Rightarrow\left(a+4\right)^2=0\)

\(\Leftrightarrow\left(x^2+10x+20\right)^2=0\)

\(\Rightarrow x^2+10x+25-25=0\)

\(\Rightarrow\left(x+5\right)^2-\left(\sqrt{5}\right)^2=0\)

\(\Rightarrow\left(x+5-\sqrt{5}\right)\left(x+5+\sqrt{5}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=-5+\sqrt{5}\\x=-5-\sqrt{5}\end{cases}}\)

19 tháng 10 2019

Điều kiện: x > 2.

Với điều kiện trên , phương  trình đã cho trở thành:

x - 3 = x - 3 ⇔ x - 3 ≥ 0 ⇔ x ≥ 3

Kết hợp điều kiện, tập nghiệm của phương trình  là S = [ 3 ; + ∞ )