giúp mình với!
chứng minh A=3^n+2 - 2^n+3 + 3^n - 2^n+2 chia hết cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=5^{2003}\left(5^2-5+1\right)\)
\(=5^{2003}\cdot21⋮7\)
a) 3n+2-2n+2+3n-2n
=(3n+2+3n)-(2n+2-2n)
=3n(33+1)-2n(22+1)
=3n.10-2n.5
Vì 2.5 chia hết cho 10 nên 2n.5 cũng chia hết cho 10
3n.10 chia hết cho 10 nên
3n.10-2n.5 chia hết cho 10
=>3n+2-2n+2+3n-2n chia hết cho 10
b)
3n+3+3n+1+2n+3+2n+2
=3n+1(32+1)+2n+2(2+1)
=3n+1.2.5+2n+1.3
=3.2.3n.5+2.3.2n+1
=3.2(3n.5+2n+1) chia hết cho 6
a) \(3^{n+2}+3^n-2^{n+2}-2^n\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.2.5\)chia hết cho 10
b)\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)
\(=3^{n+1}.10+2^{n+2}.3\)
\(=3^n.3.2.5+2^{n+1}.2.3\)chia hết cho 6
Vì n là số tự nhiên không chia hết cho 2 hay 3 nên n có dạng \(6k+1\) hoặc \(6k+5\).
Nếu \(n=6k+1\) thì hiển nhiên \(n^2-1⋮6\) và \(3n=18k+3\) chia 6 dư 3, suy ra \(4n^2+3n+5=4\left(n^2-1\right)+3n+9\) chia hết cho 6.
Nếu \(n=6k+5\) thì \(n^2-1⋮6\) (cái này dễ cm nên mình không trình bày ở đây) và \(3n=18k+15\) chia 6 dư 3, suy ra \(4n^2+3n+5=4\left(n^2-1\right)+3n+9\) chia hết cho 6.
Ta có đpcm.
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho
a)
\(A=\left(n+3\right)^2-\left(n-1\right)^2\\ =n^2+6n+9-n^2+2n-1\\ =\left(n^2-n^2\right)+\left(6n+2n\right)+\left(9-1\right)\\ =8n+8\\ =8\left(n+1\right)⋮8\forall n\)
\(\Rightarrow A⋮8\forall n\)
a) Ta có : (n+3)^2 - (n-1)^2 = n^2 + 6n + 9 - n^2 + 2n - 1
= 8n + 8 = 8(n +1) chia hết cho 8 với mọi n nguyên
b) Ta có : (n+6)^2 - (n-6)^2 = n^2 + 12n +36 - n^2 +12n - 36
= 24n chia hết cho 24 với mọi n nguyên
nhớ nha
a) (n+3)2 _(n-1)2= n2+6n+9-n2+2n-1
=8n+8 chia hết cho 8
b) tương tự
\(A=3^{n+2}-2^{n+3}+3^n-2^{n+2}\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+3}+2^{n+2}\right)\)
\(=3^n.\left(3^2+1\right)-2^{n+2}.\left(2+1\right)\)
\(=3^n.10-2^{n+2}.3\)
Ta có:
\(3^n⋮3\) và \(10⋮2\) \(\Rightarrow\left(3^n.10\right)⋮6\) (1)
\(2^{n+2}⋮2\) và \(3⋮3\Rightarrow\left(2^{n+2}.3\right)⋮6\) (2)
Từ (1) và (2) \(\Rightarrow\left(3^n.10-2^{n+2}.3\right)⋮6\)
Vậy \(A⋮6\)