Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử :
x mũ 2 - x - y mũ 2 - y
Nếu ai học qua lớp 8 thì giúp mình với !!!! Bài số 31 SBT tập 1 lớp 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai nhé .Sửu lại
\(x^2-4x^2y^2+4+4x\)
\(=\left(x^2+4x+4\right)-4x^2y^2\)
\(=\left(x+2\right)^2-\left(2xy\right)^2\)
\(=\left(x+2+2xy\right)\left(x+2-2xy\right)\)
mik bấm máy tính nó ra mỗi nghiệm là -2 thui bạn cứ tách từ từ nha bạn
\(4x^2-y^2+8\left(y-2\right)=4x^2-y^2+8y-16\)
\(=4x^2-\left(y^2-8y+16\right)=4x^2-\left(y-4\right)^2\)
\(=\left(4x-y+4\right)\left(4x+y-4\right)\)
p) \(x^3-3x^2+3x-1+2\left(x^2-x\right)\\ =\left(x^3-1\right)-\left(3x^2-3x\right)+2x\left(x-1\right)\\ =\left(x-1\right)\left(x^2+x+1\right)-3x\left(x-1\right)+2x\left(x-1\right)\\ =\left(x-1\right)\left(x^2+x+1-3x+2x\right)\\ =\left(x-1\right)\left(x^2+1\right)\)
p:Ta có: \(x^3-3x^2+3x-1+2\left(x^2-x\right)\)
\(=\left(x-1\right)^3+2x\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-2x+1+2x\right)\)
\(=\left(x-1\right)\left(x^2+1\right)\)
a) x2 ( x+ 2y) -x -2y
= x2 ( x+ 2y) -(x+2y)
= (x2-1)(x+2y)
= (x-1)(x+1)(x+2y)
b)3x2- 3y2 -2 (x-y)2
= 3(x2-y2) -2 (x-y)2
= 3(x-y)(x+y)-2(x-y)(x-y)
\(=\left(x-y\right)\left[3\left(x+y\right)-2\left(x-y\right)\right]\\ =\left(x-y\right)\left(3x+3y-2x+2y\right)\\ =\left(x-y\right)\left(x+5y\right)\)
c) x2- 2x-4y2 - 4y
= (x2-4y2)-(2x+4y)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\\ =\left(x+2y\right)\left(x-2y-2\right)\)
d) x3 - 4x2 - 9x +36
= (x3+3x2)-(7x2+21x)+(12x+36)
= x2(x+3)-7x(x+3)+12(x+3)
=(x2-7x+12)(x+3)
\(=\left[\left(x^2-3x\right)-\left(4x-12\right)\right]\left(x+3\right)\\ =\left[x\left(x-3\right)-4\left(x-3\right)\right]\left(x+3\right)=\left(x-4\right)\left(x-3\right)\left(x+3\right)\)
x^2 - xy + x - y = x(x - y) + (x - y) = (x - y)(x + 1)
Đặt H \(=x^4-5x^3+7x^2-6\)
Gỉa sử : \(H=\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)
\(=x^4+cx^3+dx^2+ax^{3\:}+acx^2+adx+bx^2+bcx+bd\)
\(=x^4+\left(a+c\right)x^3+\left(ac+b+d\right)x^2+\left(ad+bc\right)x+bd\)
\(\Leftrightarrow\hept{\begin{cases}a+c=-5\\ac+b+d=7\\ad+bc=0\end{cases}}\)
\(\left\{bd=6\right\}\)
\(\Leftrightarrow\hept{\begin{cases}a=-3\\b=3\\c=-2\end{cases}}\)
\(\left\{d=-2\right\}\)
\(\Rightarrow H=\left(x^2-3x+3\right)\left(x^2-2x-2\right)\)
Chúc bạn học tốt !!!
bài 2 :
0,25x3+x2+x=0
<=>0,25x3+0,5x2+0,5x2+x=0
<=>0,25x2(x+2)+0,5x(x+2)=0
<=>(x+2)(0,25x2+0,5x)=0
<=>(x+2)x(0,25x+0,5)=0
<=>x+2=0 hoặc x=0 hoặc 0,25x+0,5=0
=>x=-2 hoặc x=0 hoặc x=-2
vậy x=0 hoặc x=-2
a) \(xy+y^2-x-y=y\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(y-1\right)\)
b) \(25-x^2+4xy-4y^2=25-\left(x-2y\right)^2=\left(5-x+2y\right)\left(5+x-2y\right)\)
c) \(x^2-4x+3=x^2-x-3x+3=x\left(x-1\right)-3\left(x-1\right)=\left(x-1\right)\left(x-3\right)\)
d) \(y^2\left(x-1\right)-7y^3+7xy^3\)
\(=y^2\left(x-1-7y+7xy\right)\)
\(=y^2\left[\left(x-1\right)-7y\left(1-x\right)\right]=y^2\left(x-1\right)\left(1+7y\right)\)
a)
\(xy+y^2-x-y\\ =\left(xy-x\right)+\left(y^2-y\right)\\ =x\left(y-1\right)+y\left(y-1\right)\\ =\left(y-1\right)\left(x+y\right)\)
x2 - x - y2 - y
=x2 - y2 - x - y
=(x - y)(x + y) - (x + y)
=(x + y)(x - y - 1)
\(x^2-x-y^2-y=\left(x^2-y^2\right)-\left(x+y\right)\)
\(=\left(x-y\right)\cdot\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\cdot\left(x-y-1\right)\)